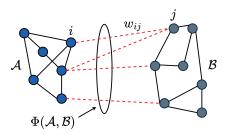
Multidimensional Fractional Programming for Normalized Cuts

Yannan Chen¹, Beichen Huang², Licheng Zhao³, and Kaiming Shen¹

¹The Chinese University of Hong Kong (Shenzhen), China ²McMaster University, Canada ³Shenzhen Research Institute of Big Data, China

December 3, 2024

Normalized Cut Problem



- Similarity between i and j is quantified by the weight $w_{ij} \in [0, 1]$.
- The cut between two clusters is

$$\Phi(\mathcal{A}, \mathcal{B}) = \sum_{i \in \mathcal{A}} \sum_{j \in \mathcal{B}} w_{ij}$$

• We consider minimizing a normalized cut across K clusters:

$$\operatorname{ncut}(\mathcal{V}_1, \mathcal{V}_2, \dots, \mathcal{V}_K) = \sum_{k=1}^K \frac{\Phi(\mathcal{V}_k, \bar{\mathcal{V}}_k)}{\operatorname{vol}(\mathcal{V}_k)}.$$

Normalized Cut Problem

After some algebra, the NCut problem can be rewritten as

$$\begin{array}{ll} \underset{\{x_{ik}\}}{\text{maximize}} & \sum_{k=1}^{K} \frac{\boldsymbol{x}_{k}^{\top} \boldsymbol{W} \boldsymbol{x}_{k}}{\boldsymbol{x}_{k}^{\top} \boldsymbol{D} \boldsymbol{x}_{k}} \\ \text{subject to} & \sum_{k=1}^{K} x_{ik} = 1, \quad i = 1, \dots, n \\ & x_{ik} \in \{0, 1\}, \quad i = 1 \dots, n, \ k = 1, \dots, K \end{array}$$

This problem is fractionally structured, we propose using fractional programming techniques to solve it.

[1] U. Von Luxburg, "A tutorial on spectral clustering," Statist. Comput., vol. 17, pp. 395–416, Aug. 2007.

Normalized Cut Problem

After some algebra, the NCut problem can be rewritten as

$$\begin{array}{ll} \underset{\{x_{ik}\}}{\text{maximize}} & \sum_{k=1}^{K} \frac{\boldsymbol{x}_{k}^{\top} \boldsymbol{W} \boldsymbol{x}_{k}}{\boldsymbol{x}_{k}^{\top} \boldsymbol{D} \boldsymbol{x}_{k}} \\ \text{subject to} & \sum_{k=1}^{K} x_{ik} = 1, \quad i = 1, \dots, n \\ & x_{ik} \in \{0, 1\}, \quad i = 1 \dots, n, \ k = 1, \dots K \end{array}$$

This problem is fractionally structured, we propose using fractional programming techniques to solve it.

[1] U. Von Luxburg, "A tutorial on spectral clustering," Statist. Comput., vol. 17, pp. 395-416, Aug. 2007.

Classical FP Technique

Proposition (Dinkelbach's transform)

The single-ratio problem

$$\begin{array}{ll} \underset{x \in \mathcal{X}}{\text{maximize}} & \frac{A(x)}{B(x)} \end{array}$$

is equivalent to

$$\underset{x \in \mathcal{X}}{\text{maximize}} \quad A(x) - yB(x),$$

where the auxiliary variable y is iteratively updated as y = A(x)/B(x).

Dinkelbach's transform only works for single-ratio problems, and does not work for the NCut with general K clusters.

[2] W. Dinkelbach, "On nonlinear fractional programming," Manage. Sci., vol. 13, no. 7, pp. 492–498, Mar. 1967.

Classical FP Technique

Proposition (Dinkelbach's transform)

The single-ratio problem

$$\begin{array}{ll} \underset{x \in \mathcal{X}}{\text{maximize}} & \frac{A(x)}{B(x)} \end{array}$$

is equivalent to

$$\underset{x \in \mathcal{X}}{\text{maximize}} \quad A(x) - yB(x),$$

where the auxiliary variable y is iteratively updated as y = A(x)/B(x).

Dinkelbach's transform only works for single-ratio problems, and does not work for the NCut with general K clusters.

[2] W. Dinkelbach, "On nonlinear fractional programming," Manage. Sci., vol. 13, no. 7, pp. 492-498, Mar. 1967.

SOTA FP Technique

Proposition (Quadratic transform)

The multi-ratio problem

$$\underset{x \in \mathcal{X}, \boldsymbol{y}}{\text{maximize}} \quad \sum_{k=1}^{K} \frac{A_k(x)}{B_k(x)}$$

is equivalent to

$$\underset{x \in \mathcal{X}, y}{\textit{maximize}} \quad \sum_{k=1}^{K} 2y_k \sqrt{A_k(x)} - y_k^2 B_k(x),$$

where the auxiliary variables $\{y_k\}$ are iteratively updated as $y_k=\sqrt{A_k(x)}/B_k(x).$

[3] K. Shen and W. Yu, "Fractional programming for communication systems—Part I: Power control and beamforming," IEEE Trans. Signal Process., vol. 66, no. 10, pp. 2616–2630, Mar. 2018.

SOTA FP Technique

• By quadratic transform, we can recast the NCut problem into

$$\begin{array}{ll} \underset{\{x_{ik}, y_k\}}{\text{maximize}} & \sum_{k=1}^{K} 2y_k \sqrt{\boldsymbol{x}_k^{\top} \boldsymbol{W} \boldsymbol{x}_k} - y_k^2 \boldsymbol{x}_k^{\top} \boldsymbol{D} \boldsymbol{x}_k \\ \text{subject to} & \sum_{k=1}^{K} x_{ik} = 1, \quad i = 1, \dots, n \\ & x_{ik} \in \{0, 1\}, \quad i = 1, \dots, n, \ k = 1, \dots, K \end{array}$$

• The numerators and the denominators are decoupled. But the problem is still difficult to solve.

SOTA FP Technique

• By quadratic transform, we can recast the NCut problem into

$$\begin{array}{ll} \underset{\{x_{ik}, y_k\}}{\text{maximize}} & \sum_{k=1}^{K} 2y_k \sqrt{\boldsymbol{x}_k^{\top} \boldsymbol{W} \boldsymbol{x}_k} - y_k^2 \boldsymbol{x}_k^{\top} \boldsymbol{D} \boldsymbol{x}_k \\ \text{subject to} & \sum_{k=1}^{K} x_{ik} = 1, \quad i = 1, \dots, n \\ & x_{ik} \in \{0, 1\}, \quad i = 1, \dots, n, \ k = 1, \dots, K \end{array}$$

• The numerators and the denominators are decoupled. But the problem is still difficult to solve.

Matrix FP Problem

- Each $A_k(x) \ge 0 \implies A_k(x) \in \mathbb{S}^{m \times m}_+$.
- Each $B_k(x) > 0 \implies \mathbf{B}_k(x) \in \mathbb{S}_{++}^{m \times m}$.
- The ratio term is then extended to the matrix form as

$$\frac{A_k(x)}{B_k(x)} \in \mathbb{R}_+ \implies \boldsymbol{B}_k(x)^{-1} \boldsymbol{A}_k(x) \in \mathbb{S}_+^{m \times m}.$$

• The matrix version of the sum-of-ratios problem is

$$\underset{x \in \mathcal{X}}{\text{maximzie}} \quad \sum_{k=1}^{K} \operatorname{tr} \left(\boldsymbol{B}_{k}^{-1}(x) \boldsymbol{A}_{k}(x) \right).$$

New FP Technique

Proposition (Multidimensional quadratic transform)

Suppose that each $oldsymbol{A}_k(x)\in\mathbb{S}^{m imes m}_+$ can be factorized as

 $\boldsymbol{A}_k(x) = [\boldsymbol{Z}_k(x)]^\top [\boldsymbol{Z}_k(x)]$ where $\boldsymbol{Z}_k(x) \in \mathbb{R}^{\ell \times m}$

for some positive integer ℓ .

The matrix FP problem is equivalent to

$$\underset{x \in \mathcal{X}, \mathbf{Y}_k \in \mathbb{R}^{\ell \times m}}{\text{maximize}} \quad \sum_{k=1}^{K} \operatorname{tr} \left(2\mathbf{Y}_k [\mathbf{Z}_k(x)]^\top - \mathbf{Y}_k \mathbf{B}_k(x) \mathbf{Y}_k^\top \right)$$

New Problem Formulation

• By the multidimensional quadratic transform, we reformulate the NCut problem as

$$\begin{array}{ll} \underset{\{x_{ik}, \boldsymbol{y}_k\}}{\text{maximize}} & \sum_{k=1}^{K} \left(2\boldsymbol{y}_k^{\top} \boldsymbol{W}^{\frac{1}{2}} - \boldsymbol{y}_k^{\top} \boldsymbol{y}_k \boldsymbol{\delta}^{\top} \right) \boldsymbol{x}_k \\ \text{subject to} & \sum_{k=1}^{K} x_{ik} = 1, \quad i = 1, \dots, n \\ & x_{ik} \in \{0, 1\}, \quad i = 1, \dots, n, \ k = 1, \dots, K \end{array}$$

- When $\{x_{ik}\}$ are fixed, the auxiliary variables $\{y_k\}$ can be optimally updated as $y_k = \frac{W^{\frac{1}{2}x_k}}{x_k^{-1}Dx_k}$.
- When $\{y_k\}$ are fixed, the new problem is a bipartite problem of $\{x_{ik}\}$, which can be efficiently solved by the standard method.

Numerical Results

Table: NCut objective values achieved by the different algorithms. The best results are marked in bold.

	SC	FINC	FCD	FPC
Breast	2.438568	2.445278	2.446499	2.431813
Thyroid	0.983144	0.983393	0.986163	0.983115
Office+Caltech10	4.483921	4.483962	4.491925	4.483501
Splice	0.997651	0.999867	0.998569	0.997636
Rice	0.499193	0.499999	0.499209	0.499193
Landsat	2.994675	2.999986	2.995302	2.994335
USPS	4.476479	4.476404	4.476591	4.475869
Epileptic	1.992376	1.991369	1.992688	1.991311

Numerical Results

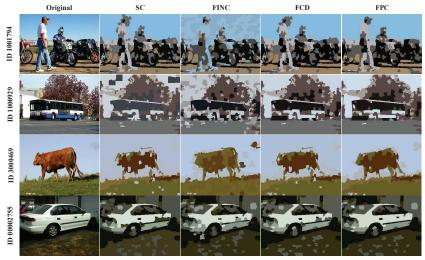


Figure: Image segmentation by the different algorithms.

- The NCut problem is fractionally structured, recognized as a matrix-ratio fractional program.
- Dinkelbach's algorithm is limited to single ratio, so it does not work for NCut.
- We propose using a new technique called matrix quadratic transform to recast NCut to a sequence of bipartite matching problems.

Thanks!

E-mail: yannanchen@link.cuhk.edu.cn

shenkaiming@cuhk.edu.cn