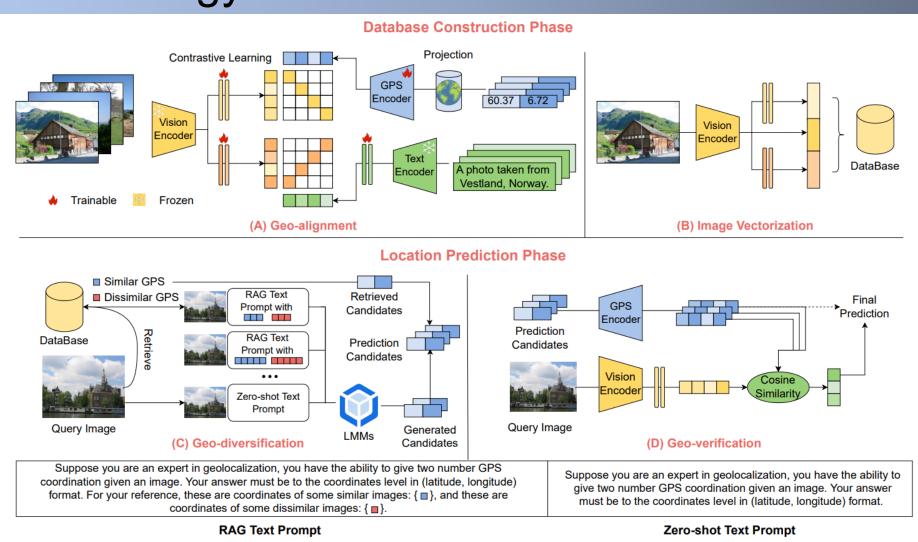

G3: An Effective and Adaptive Framework for Worldwide Geolocalization Using Large Multi-Modality Models

Background & Motivation

Background

Worldwide image geolocalization aims to pinpoint the exact shooting location for any given photo taken anywhere on Earth. Unlike geolocalization within specific regions (e.g., at city level), worldwide geolocalization greatly unleashes the potential of geolocalization, which is useful for various real-world applications, such as crime tracking and navigation.


Motivation

- It is very challenging to extract visual semantics that accurately indicate an images' geolocation, as two distant places could possibly have similar visual features.
- Image data usually exhibits significant heterogeneity in its geographical distribution, which existing methods can hardly handle.

Contributions

- We present G3, a novel solution for the worldwide geolocalization task.
- We release a new dataset MP16-Pro, adding textual localization descriptions to each sample based on the original dataset MP16 to facilitate future research in the field.
- We extensively experiment with two well-established datasets IM2GPS3k and YFCC4K.

Methodology

Pengyue Jia¹, Yiding Liu², Xiaopeng Li¹, Yuhao Wang¹, Yantong Du¹, Xiao Han¹, Xuetao Wei³, Shuaiqiang Wang², Dawei Yin², Xiangyu Zhao^{1*}

¹City University of Hong Kong, ²Baidu Inc., ³Southern University of Science and Technology

Geo-alignment

- $\mathbf{e}_{i,\text{text}}^{\text{image}} = f_{\text{text}}(\mathcal{V}(\mathbf{I}_i)), \ \mathbf{e}_{i,\text{gps}}^{\text{image}} = f_{\text{gps}}(\mathcal{V}(\mathbf{I}_i))$ • Image encoding
- GPS encoding $\begin{cases} \mathbf{x} = \mathbf{R} \cdot (\lambda \lambda_0) \\ \mathbf{y} = \mathbf{R} \cdot ln[\tan(\frac{\pi}{4} + \frac{\phi}{2})] \end{cases} \quad \mathbf{e}_i^{\text{gps}} = \sum_{k=1}^K f_k(\gamma(\mathbf{G}_i, \sigma_k))$
- Text encoding

$$\mathbf{e}_i^{\text{text}} = f(\mathcal{T}(\mathbf{T}_i))$$

Optimization

$$\mathcal{L}_{a,b} = -\sum_{i=1}^{n} log(\frac{\exp(\text{logits}_{ii})}{\sum_{j=1}^{n} \exp(\text{logits}_{ij})}), \text{ logits} = (\frac{\mathbf{e}^{a}}{\|\mathbf{e}^{a}\|_{2}})(\frac{\mathbf{e}^{b}}{\|\mathbf{e}^{b}\|_{2}})^{\mathrm{T}} \cdot \exp^{t_{a,b}}$$

Geo-diversification

We construct K RAG prompts with different numbers of reference coordinates, and each prompt will generate N results. S coordinate candidates of retrieved similar images will also be considered.

$$\{c_1^k, c_2^k, \cdots, c_n^k\} = \mathsf{RAG}(p^k)$$
$$\{c_1, c_2, \cdots, c_m\}, \text{ where } m = K \times N + S$$

Geo-verification

We reinvent the well-trained Image-to-GPS model in Geo-alignment to verify the prediction.

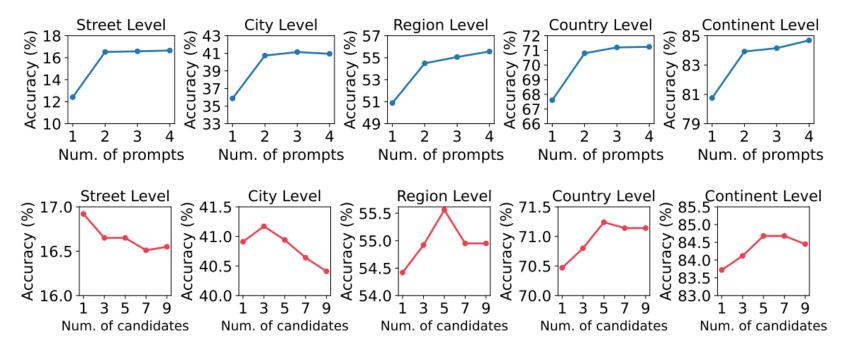
$$ext{sim} = \mathbf{e}_{ ext{gps}}^{ ext{image}} (\mathbf{e}^{gps})^{ ext{T}}$$

 $j = ext{argmax}(ext{sim}_j), \ j \in \{1, 2, \cdots, m\}$

Experiments

Overall Experimental Results

Methods		IM2GPS3K				YFCC4K				
	Street 1km	City 25km	Region 200km	Country 750km	Continent 2500km	Street 1km	City 25km	Region 200km	Country 750km	Continent 2500km
[L]kNN, sigma=4 [30]	7.2	19.4	26.9	38.9	55.9	2.3	5.7	11	23.5	42
PlaNet [22]	8.5	24.8	34.3	48.4	64.6	5.6	14.3	22.2	36.4	55.8
CPlaNet [22]	10.2	26.5	34.6	48.6	64.6	7.9	14.8	21.9	36.4	55.5
ISNs [18]	10.5	28	36.6	49.7	66	6.5	16.2	23.8	37.4	55
Translocator [20]	11.8	31.1	46.7	58.9	80.1	8.4	18.6	27	41.1	60.4
GeoDecoder [3]	12.8	33.5	45.9	61	76.1	10.3	24.4	33.9	50	68.7
GeoCLIP [29]	14.11	34.47	50.65	69.67	83.82	9.59	19.31	32.63	55	74.69
Img2Loc [43]	15.34	39.83	53.59	69.7	82.78	19.78	30.71	41.4	58.11	74.07
PIGEON [5]	11.3	36.7	<u>53.8</u>	72.4	85.3	10.4	23.7	40.6	<u>62.2</u>	<u>77.7</u>
Ours	16.65	40.94	55.56	71.24	84.68	23.99	35.89	46.98	64.26	78.15


Ablation Study

Methods	IM2GPS3K					YFCC4K				
	Street 1km	City 25km	Region 200km	Country 750km	Continent 2500km	Street 1km	City 25km	Region 200km	Country 750km	Continent 2500km
w/o Geo-A	15.71	40.64	54.85	70.8	84.05	20.8	32.72	44.25	61.83	76.64
w/o Geo-D	16.35	40.51	53.89	69.2	83.11	$\overline{20.28}$	31.87	43.67	60.84	76.25
w/o Geo-V	14.98	38.27	51.25	67.6	81.18	19.03	30.24	40.93	57.93	72.83
Ours	16.65	40.94	55.56	71.24	84.68	23.99	35.89	46.98	64.26	78.15

Hyperparameter Analysis

Impact of LMMs on G3

Methods	Street 1km	City 25km	Region 200km	Country 750km	Continent 2500km
Img2Loc (LLaVA)	10.21	29.06	39.51	56.36	71.07
Img2Loc (GPT4V)	15.34	39.83	53.59	69.70	82.78
G3 (LLaVA)	14.31	35.87	49.42	66.93	81.78
G3 (GPT4V)	16.65	40.94	55.56	71.24	84.68

Necessity Analysis of Three Representations Alignment

Methods	Street 1km	City 25km	Region 200km	Country 750km	Continent 2500km
IMG	15.71	40.64	54.85	70.8	84.05
IMG+GPS	16.91	41.41	55.02	<u>70.94</u>	84.18
IMG+GPS+TEXT(G3)	16.65	<u>40.94</u>	55.56	71.24	84.68

Case Study on Reference Image Retrieval

Experiments on Textual Description Granularity

Methods	Street	City	Region	Country	Continent
	1km	25km	200km	750km	2500km
G3-N	16.44	40.64	54.35	70.57	83.98
G3	16.65	40.94	55.56	71.24	84.68

Failure Analysis

Code

HomePage

AML Lab