

Theoretical and Empirical Insights into the Origins of Degree Bias in Graph Neural Networks

Arjun Subramonian, Jian Kang, Yizhou Sun NeurIPS 2024

Contributions

- We provide thorough, empirically-validated theoretical analysis of why GNNs perform better for high-degree nodes on node classification tasks
- We prove degree bias arises from variety of factors associated with node's degree, e.g., homophily, neighbor diversity
- We prove GNNs reduce loss on low-degree nodes more slowly

Motivation

- GNNs exhibit better performance for highdegree nodes on node classification tasks
- Privileges high-degree actors during social and content recommendation

Motivation

- Researchers have proposed various hypotheses for why GNN degree bias occurs
- We find via a survey of 38 degree bias papers that these hypotheses are often not rigorously validated, and can even be contradictory

Hypothesis	Papers
(H1) Neighborhoods of low-degree nodes	[115], [190], [193], [53], [219], [112], [113],
contain insufficient or overly noisy informa-	[118], [116], [84], [110], [72], [109], [195],
tion for effective representations.	[222], [174], [46], [31], [76], [220], [197]
(H2) High-degree nodes have a larger influ-	[163], [190], [219], [87], [208], [109], [209]
ence on GNN training because they have a	
greater number of links with other nodes,	
thereby dominating message passing.	
(H3) High-degree nodes exert more influ-	[219], [29], [106], [46], [210]
ence on the representations of and predic-	
tions for nodes as the number of GNN layers	
increases.	
(H4) In semi-supervised learning, if training	[163], [208], [71]
nodes are picked randomly, test predictions	
for high-degree nodes are more likely to be	
influenced by these training nodes because	
they have a greater number of links with	
other nodes.	
(H5) Representations of high-degree nodes	[122], [178], [105]
cluster more strongly around their corre-	
sponding class centers, or are more likely to	
be linearly separable.	

Test-Time Degree Bias

Theorem 1. Consider a test node *i* with label $Y_i = c$. Furthermore, consider a label $c' \neq c$. Let $\mathbb{P}\left(\ell(\mathcal{M} \mid i, c) > \ell(\mathcal{M} \mid i, c')\right)$ be the probability of any model \mathcal{M} misclassifying *i*. Then: GNN, MLP, logistic regression, etc. $\mathbb{P}\left(\ell(\mathcal{M} \mid i, c) > \ell(\mathcal{M} \mid i, c')\right) \leq \frac{1}{1 + R_{i,c'}}$, normalized measure of dispersion often used in economics to quantify inequality

where the squared inverse coefficient of variation

$$R_{i,c'} = \frac{\left(\mathbb{E}\left[Z_{i,c'}^{(L)} - Z_{i,c}^{(L)}\right]\right)^{2}}{\operatorname{Var}\left[Z_{i,c'}^{(L)} - Z_{i,c}^{(L)}\right]}.$$

$$c \text{ logit for node } i$$

Visualization: Test-Time Degree Bias

RW: Test-Time Degree Bias

Theorem 2.
$$\forall l \in [L], \forall j \in \mathcal{V}, \operatorname{Var}_{x \sim \mathscr{D}_{Y_j}} \left[x^T w_{c'-c}^{(l)} \right] \leq M.$$

Then:

Collision probability

RW:

l-hop Prediction Homogeneity

$$\beta_{i,c'}^{(l)} = \mathbb{E}_{j \sim \mathcal{N}^{(l)}(i)} \left[\mathbb{E}_{x \sim \mathcal{D}_{Y_j}} \left[x^T w_{c'-c}^{(l)} \right] \right]$$

Distribution over terminal nodes of length-l random walks starting from i

Boundary that separates classes c and c': $w_{c'-c}^{(l)} = W_{.,c'}^{(l)} - W_{.,c}^{(l)}$

High level: measures expected prediction score for nodes j, weighted by probability of being reached by length-l random walk starting from i

RW:

l-hop Collision Probability

$$\alpha_{i}^{(l)} = \sum_{j \in \mathscr{V}} \left[\left(P_{\mathsf{rw}}^{l} \right)_{ij} \right]^{2}$$

- **High level:** quantifies probability of two length-l random walks starting from i colliding at same end node j
- When collision probability is lower, random walks are more *diverse*

RW: Test-Time Degree Bias

- To make $R_{i,c'}$ larger (i.e., minimize probability of misclassification), sufficient (although not necessary) that $\frac{1}{\sum_{l=0}^{L} \alpha_i^{(l)}}$ is larger $\alpha_i^{(l)} = \sum_{j \in \mathscr{V}} \left[\left(P_{\mathsf{rw}}^l \right)_{ij} \right]^2$
 - -hop neighborhood

RW: Test-Time Degree Bias

$$\beta_{i,c'}^{(l)} = \mathbb{E}_{j \sim \mathcal{N}^{(l)}(i)} \left[\mathbb{E}_{x \sim \mathcal{D}_{Y_j}} \left[x^T w_{c'-c}^{(l)} \right] \right]$$

- To make $R_{i,c'}$ larger, it is sufficient that for all $l \in [L]$, $\beta_{i,c'}^{(l)}$ is more negative:
 - e.g., when more nodes in l-hop neighborhood of i are in class c and were part of training set S

Visualization: Test-Time Degree Bias

Visualization: Training-Time Degree Bias

SYM: Why do we care?

- As GNNs are applied to increasingly large networks, only few epochs of training may be possible due to limited compute
 - Which nodes receive superior utility from limited training?
- GNNs may serve as efficient lookup mechanism for nodes in deployed systems
 - If partially-trained, can perform poorly for low-degree nodes

SYM:

Training-Time Degree Bias

Theorem 2. The change in loss for i after an arbitrary training step t obeys:

$$\left| \mathscr{\ell}[t+1](\overline{\mathsf{SYM}}\,|\,i,c) - \mathscr{\ell}[t](\overline{\mathsf{SYM}}\,|\,i,c) \right| \leq C[t] \sqrt{D_{ii}} \sum_{l=0}^{L} \left\| \widetilde{\chi}_{i}^{(l)}[t] \right\|_{2}$$

Expected similarity between neighbors of node iand nodes in training batch B[t]

$$\forall m \in B[t], \left(\widetilde{\chi}_i^{(l)}[t]\right)_m = \sqrt{D_{mm}} \mathbb{E}_{j \sim \mathcal{N}^{(l)}(i), k \sim \mathcal{N}^{(l)}(m)} \left[\frac{1}{\sqrt{D_{jj}D_{kk}}} X_j X_k^T\right]$$

SYM: Training-Time Degree Bias

- Change in loss for *i* after arbitrary training step has smaller magnitude if *i* is low-degree
- Loss for *i* changes more slowly when features of nodes in its *L*-hop neighborhood are not similar to the features in *L* -hop neighborhoods of nodes in training batch

SYM: Training-Time Degree Bias

CITESEER

Principled Roadmap: Theoretically-Informed Criteria

- Maximizing inverse collision probability of low-degree nodes
- Increasing L-hop prediction homogeneity of lowdegree nodes
- Minimizing distributional differences in representations of low and high-degree nodes
- Reducing training discrepancies with regards to rate at which GNNs learn for low vs. high-degree nodes

Conclusion

- Contributions:
 - Unify and distill hypotheses for origins of GNN degree bias
 - Prove degree bias arises from homophily, diversity, etc. of neighbors
 - Prove during training, some GNNs may adjust loss on lowdegree nodes more slowly

