

Theoretical and Empirical Insights into the Origins of Degree Bias in Graph Neural Networks

Arjun Subramonian, Jian Kang, Yizhou Sun NeurIPS 2024

Contributions

- We provide thorough, empirically-validated **theoretical analysis** of why GNNs perform better for high-degree nodes on node classification tasks
- We prove degree bias arises from variety of factors associated with node's degree, e.g., homophily, neighbor diversity
- We prove GNNs reduce loss on low-degree nodes more slowly

Motivation

- GNNs exhibit better performance for highdegree nodes on **node classification** tasks
- Privileges high-degree actors during social and content recommendation

Motivation

- Researchers have proposed various hypotheses for why GNN degree bias **occurs**
- We find via a survey of 38 degree bias papers that these hypotheses are often not rigorously validated, and can even be contradictory

Test-Time Degree Bias

Theorem 1. Consider a test node i with label $Y_i = c$. Furthermore, $\text{consider a label } c' \neq c. \text{ Let } \mathbb{P}\left(\ell(\mathscr{M}|i,c) > \ell(\mathscr{M}|i,c')\right) \text{ be the } c' \neq c.$ probability of any model M misclassifying i. Then: $\mathbb{P}\left(\ell(\mathcal{M}|i,c) > \ell(\mathcal{M}|i,c')\right) \leq$ 1 $1 + R_{i,c'}$, normalized measure of dispersion often used in economics to quantify inequality GNN, MLP, logistic regression, etc.

where the **squared inverse coefficient of variation**

$$
R_{i,c'} = \frac{\left(\mathbb{E}\left[Z_{i,c}^{(L)} - Z_{i,c}^{(L)}\right]\right)^2}{Var\left[Z_{i,c}^{(L)} - Z_{i,c}^{(L)}\right]}
$$

c logit for node *i*

Visualization: Test-Time Degree Bias

RW: Test-Time Degree Bias

Theorem 2.
$$
\forall l \in [L], \forall j \in \mathcal{V}, \text{Var}_{x \sim \mathcal{D}_{Y_j}} \left[x^T w_{c'-c}^{(l)} \right] \leq M.
$$

Then:

Collision probability

RW:

l-hop Prediction Homogeneity

$$
\beta_{i,c'}^{(l)} = \mathbb{E}_{j \sim \mathcal{N}^{(l)}(i)} \left[\mathbb{E}_{x \sim \mathcal{D}_{Y_j}} \left[x^T \overline{w_{c'-c}^{(l)}} \right] \right]
$$

Distribution over terminal nodes of length- l random walks starting from *i*

Boundary that separates classes *c* and *c*′: $w_{c'-c}^{(l)} = W_{.,c'}^{(l)} - W_{.,c}^{(l)}$

High level: measures expected prediction score for $\mathsf{nodes}\,j$, weighted by probability of being reached by length- l random walk starting from i

RW:

l-hop Collision Probability

$$
\alpha_i^{(l)} = \sum_{j \in \mathcal{V}} \left[\left(P_{\text{rw}}^l \right)_{ij} \right]^2
$$

- High level: quantifies probability of two length-*l* random walks starting from i colliding at same end node j
- **•** When collision probability is lower, random walks are more *diverse*

RW: Test-Time Degree Bias

- To make $R_{i,c'}$ larger (i.e., minimize probability of misclassification), sufficient (although not necessary) that is larger 1 $\sum_{l=0}^{L} \alpha_i^{(l)}$ $\alpha_i^{(l)} = \sum_{j \in \mathcal{V}} \left[\left(P^l_{\mathsf{T}} \right) \right]$ $\begin{bmatrix} \mathsf{rw} \end{bmatrix}_{ij}$ 2
	- Indicates more diverse and possibly informative *L* -hop neighborhood

RW: Test-Time Degree Bias

$$
\beta_{i,c'}^{(l)} = \mathbb{E}_{j \sim \mathcal{N}^{(l)}(i)} \left[\mathbb{E}_{x \sim \mathcal{D}_{Y_j}} \left[x^T w_{c'-c}^{(l)} \right] \right]
$$

- To make $R_{i,c'}$ larger, it is sufficient that for all $l \in [L]$, $\beta_{i,c'}^{(l)}$ is more negative:
	- \bullet e.g., when more nodes in l -hop neighborhood of i are in class c and were part of training set S

Visualization: Test-Time Degree Bias

Visualization: Training-Time Degree Bias

SYM: Why do we care?

- As GNNs are applied to increasingly large networks, only few epochs of training may be possible due to limited compute
	- Which nodes receive superior utility from limited training?
- GNNs may serve as efficient lookup mechanism for nodes in deployed systems
	- If partially-trained, can perform poorly for low-degree nodes

SYM:

Training-Time Degree Bias

Theorem 2. The change in loss for *i* after an arbitrary training step t obeys:

$$
\left| \ell[t+1](\overline{\text{SYM}} | i, c) - \ell[t](\overline{\text{SYM}} | i, c) \right| \le C[t] \sqrt{D_{ii}} \sum_{l=0}^{L} \left\| \overline{\widetilde{\chi}_{i}^{(l)}[t]} \right\|_{2}
$$

Expected similarity between neighbors of node *i* and nodes in training batch *B*[*t*]

$$
\forall m \in B[t], \left(\widetilde{\chi}_i^{(l)}[t]\right)_m = \sqrt{D_{mm}} \mathbb{E}_{j \sim \mathcal{N}^{(l)}(i), k \sim \mathcal{N}^{(l)}(m)} \left[\frac{1}{\sqrt{D_{jj}D_{kk}}} X_j X_k^T\right]
$$

SYM: Training-Time Degree Bias

- \bullet Change in loss for i after arbitrary training step has smaller magnitude if *i* is low-degree
- \bullet Loss for i changes more slowly when features of nodes in its L -hop neighborhood are not similar to the features in L -hop neighborhoods of nodes in training batch

SYM: **Training-Time Degree Bias**

CITESEER

Principled Roadmap: Theoretically-Informed Criteria

- Maximizing inverse collision probability of low-degree nodes
- Increasing L-hop prediction homogeneity of lowdegree nodes
- Minimizing distributional differences in representations of low and high-degree nodes
- Reducing training discrepancies with regards to rate at which GNNs learn for low vs. high-degree nodes

Conclusion

- **• Contributions:**
	- Unify and distill hypotheses for origins of GNN degree bias
	- Prove degree bias arises from homophily, diversity, etc. of neighbors
	- Prove during training, some GNNs may adjust loss on lowdegree nodes more slowly

