Queueing Matching Bandits with Preference Feedback

Jung-hun Kim¹ and Min-hwan Oh¹

¹Seoul National University

Oueue/Agent

Motivation examples for this framework include

• Ride-hailing platforms where riders are assigned to drivers.

Motivation examples for this framework include

- Ride-hailing platforms where riders are assigned to drivers.
- Online labor service markets where tasks are recommended to freelance workers.

Problem Statement - Preference/Service Rate

For each agent n ∈ [N], their feature information is known as x_n ∈ ℝ^d, and each arm k ∈ [K] is characterized by latent vector θ_k ∈ ℝ^d.

Problem Statement - Preference/Service Rate

- For each agent n ∈ [N], their feature information is known as x_n ∈ ℝ^d, and each arm k ∈ [K] is characterized by latent vector θ_k ∈ ℝ^d.
- Given $S_{k,t}$ (set of agents assigned to arm k, 'assortment'), the service rate for arm k to serve a job of agent $n \in S_{k,t}$ follows Multi-nomial Logit (MNL) model as follows

$$\mu(n|S_{k,t},\theta_k) = \frac{\exp(x_n^{\top}\theta_k)}{1+\sum_{m\in S_{k,t}}\exp(x_m^{\top}\theta_k)}.$$

Problem Statement - Preference/Service Rate

- For each agent n ∈ [N], their feature information is known as x_n ∈ ℝ^d, and each arm k ∈ [K] is characterized by latent vector θ_k ∈ ℝ^d.
- Given $S_{k,t}$ (set of agents assigned to arm k, 'assortment'), the service rate for arm k to serve a job of agent $n \in S_{k,t}$ follows Multi-nomial Logit (MNL) model as follows

$$\mu(n|S_{k,t},\theta_k) = \frac{\exp(x_n^{\top}\theta_k)}{1+\sum_{m\in S_{k,t}}\exp(x_m^{\top}\theta_k)}.$$

• It is allowed to have an outside option (n_0) , or not to choose any, for each arm k according to MNL with probability as $\mu(n_0|S_{k,t},\theta_k) = \frac{1}{1+\sum_{m\in S_{k,t}} \exp(x_m^{\top}\theta_k)}$.

Problem Statement - Objective Function

• For the stability of the systems, we define the average queue lengths over horizon time \mathcal{T} as

$$\mathcal{Q}(T) = rac{1}{T} \sum_{t \in [T]} \sum_{n \in [N]} \mathbb{E}[Q_n(t)].$$

Problem Statement - Objective Function

• For the stability of the systems, we define the average queue lengths over horizon time *T* as

$$\mathcal{Q}(T) = rac{1}{T} \sum_{t \in [T]} \sum_{n \in [N]} \mathbb{E}[Q_n(t)].$$

• By following previous queueing bandit literature [Sentenac et al. 2021; Freund et al. 2022; Yang et al. 2023; Huang et al. 2024], we define the system stability as follows:

Problem Statement - Objective Function

For the stability of the systems, we define the average queue lengths over horizon time T as

$$\mathcal{Q}(\mathcal{T}) = rac{1}{\mathcal{T}} \sum_{t \in [\mathcal{T}]} \sum_{n \in [N]} \mathbb{E}[\mathcal{Q}_n(t)].$$

• By following previous queueing bandit literature [Sentenac et al. 2021; Freund et al. 2022; Yang et al. 2023; Huang et al. 2024], we define the system stability as follows:

Definition 1 (System Stability)

The systems are denoted to be stable if $\lim_{T\to\infty} Q(T) < \infty$.

As a preliminary study, we analyze an oracle strategy of MaxWeight under known service rates. It is shown to achieve Q(T) = O (min{N,K}/ε) < ∞, where ε is a traffic slackness.

- As a preliminary study, we analyze an oracle strategy of MaxWeight under known service rates. It is shown to achieve Q(T) = O (min{N,K}/ε) < ∞, where ε is a traffic slackness.
- Under unknown service rates, we propose UCB-based and Thompson Sampling-based MaxWeight algorithms.

- As a preliminary study, we analyze an oracle strategy of MaxWeight under known service rates. It is shown to achieve Q(T) = O (min{N,K}/ε) < ∞, where ε is a traffic slackness.
- Under unknown service rates, we propose UCB-based and Thompson Sampling-based MaxWeight algorithms.
- Our algorithms achieve stability with $\lim_{T\to\infty} \mathcal{Q}(T) = O\left(\frac{\min\{N,K\}}{\epsilon}\right)$.

- As a preliminary study, we analyze an oracle strategy of MaxWeight under known service rates. It is shown to achieve Q(T) = O (min{N,K}/ε) < ∞, where ε is a traffic slackness.
- Under unknown service rates, we propose UCB-based and Thompson Sampling-based MaxWeight algorithms.
- Our algorithms achieve stability with $\lim_{T\to\infty} \mathcal{Q}(T) = O\left(\frac{\min\{N,K\}}{\epsilon}\right)$.
- Our algorithms achieve regret bounds of $\widetilde{O}\left(\min\{\sqrt{T}Q_{\max}, T^{3/4}\}\right)$.

- As a preliminary study, we analyze an oracle strategy of MaxWeight under known service rates. It is shown to achieve Q(T) = O (min{N,K}/ε) < ∞, where ε is a traffic slackness.
- Under unknown service rates, we propose UCB-based and Thompson Sampling-based MaxWeight algorithms.
- Our algorithms achieve stability with $\lim_{T\to\infty} \mathcal{Q}(T) = O\left(\frac{\min\{N,K\}}{\epsilon}\right)$.
- Our algorithms achieve regret bounds of $\widetilde{O}\left(\min\{\sqrt{T}Q_{\max}, T^{3/4}\}\right)$.
- We demonstrate the effectiveness of our algorithms using synthetic datasets.