
RedCode: Risky Code Execution and 
Generation Benchmark for Code Agents

Chengquan Guo1∗, Xun Liu2∗, Chulin Xie2∗,
Andy Zhou2,3, Yi Zeng4, Zinan Lin5, Dawn Song6, Bo Li1,2

1 University of Chicago 2 University of Illinois Urbana-Champaign 
3 Lapis Labs 4 Virginia Tech 5 Microsoft Research 6 University of California Berkeley

∗ Equal Contribution 



Background: LLM Agents

The most powerful LLM should do more than just answer questions. By integrating with 
external tools, LLM-based agents can interact with the environment.

Action

Feedback

Empower

Utilize

LLM
s

Agent Environment

Tools



Background: Code Agents

Executable code actions elicit better llm agents, ICML 2024

• Integrated with external tools like Python 
interpreters or command line interfaces to execute 
code.

• Dynamically adjust the actions based on observations 
and feedback (e.g., execution results) for multiple 
interaction runs.

CodeAct Agent generating and executing code

Code agents can pose serious risks by taking 
harmful or unintended actions.



RedCode: Safety Evaluation for Code Agents
RedCode benchmark evaluates the risks of code agents around 

code execution and code generation.

ü Real interaction with systems. 

ü Holistic evaluation on code execution and generation. 

ü Diverse natural and programming languages input format.

ü Comprehensive risky scenarios and tests.

RedCode-Exec: 4050 test cases from 25 risky 
scenarios

RedCode-Gen: 160 test cases from 8 malware 
families



RedCode-Exec Construction: Python



RedCode-Exec Construction: Translation



Evaluation of RedCode-Exec



RedCode-Gen Construction



Evaluation of RedCode-Gen



RedCode Construction Overview



Safety comparison of agents on RedCode-Exec



Evaluation of 15 agents on RedCode-Exec



Low rejection rate & high attack success rate on RedCode-Exec



Input format comparison on RedCode-Exec



Evaluation of agents on RedCode-Gen



Conclusions

(1) The overall attack success rate is high on RedCode-Exec, highlighting the vulnerability of 
existing agents. The rejection rate for risky test cases on the operating and file systems is higher 
than in other domains.

(2) Agents are more likely to execute harmful actions by risky queries in natural language than in 
programming languages. Python leads to a higher rejection rate than Bash.

(3) Experiments on three types of code agents show that OpenCodeInterpreter is relatively safer 
than CodeAct and ReAct, potentially due to its hard-coded safety constraints. 

(4) Agents paired with stronger base LLMs (e.g., GPT-4) can have a higher rejection rate for risky 
code execution in RedCode-Exec, but they also generate more sophisticated and effective harmful 
software in RedCode-Gen, indicating safety concerns.



Thank You!

Project page: redcode-agent.github.io


