
 Yutao Mou Shikun Zhang Wei Ye*

Peking University, China

SG-Bench: Evaluating LLM Safety Generalization
Across Diverse Tasks and Prompt Types

Accepted by NeurIPS 2024 D&B Track

Background & Motivation

lPotential Safety Risks of LLMs

l LLM Safety Evaluation

1

Ø RQ1: Can the safety-aligned LLMs demonstrate
consistent safety performance on both generation
and discrimination tasks?

Ø RQ2: Will prompt engineering techniques affect the
safety performance of LLMs, positive or negative?

Finding：most LLMs perform worse on discriminative tasks
than generative ones, and are highly susceptible to prompts

Ø generating harmful contents
(toxic and biased responses, false messages)

Ø performing malicious operations
(system vulnerability attack, database information theft)

SG-Bench Evaluation Benchmark

2

l SG-Bench is a multi-dimensional safety evaluation Benchmark to evaluate LLM Safety
Generalization across diverse test tasks and prompt types

l SG-Bench includes three types of test tasks: open-end text generation, multiple-choice
questions and safety judgments

l SG-Bench also covers multiple prompt engineering and jailbreak attack techniques

SG-Bench Evaluation Benchmark

3

1. Collection of malicious instruction samples from different source

2. Instruction diversity checks and filtering

3. Designing prompts corresponding to different task types (generation,

MCQ, judgment)

4. Introducing jailbreak attacks and prompt engineering techniques

(such as few-shot, chain-of-thought, etc.) to modify the prompts

ü Evaluation
Metrics

Open-end Generation：ASR

MCQ：error rates

Judgment：error rates

Main Results&Key Findings

4

Finding1：Compared to open-ended text generation,
LLMs generally exhibit poorer safety performance in
discrimination tasks.

Finding2：Even after safety training, most LLMs
remain vulnerable to jailbreak attacks.

Finding3：Setting system prompts appropriately,
especially role-oriented prompts, can effectively
defend against jailbreak attacks.

Finding4：Chain-of-thought prompting may negatively
impact the safety performance of LLMs, particularly in
discrimination tasks.

Finding5：The safety performance of LLMs also follows
scaling laws; as model capacity and training data
increase, the safety performance can also improve.

Analyses

5

l Why does LLM safety performance change when various prompt contexts are added to
the same malicious instruction?

Ø Using the attention-by-gradient method, each word in the LLM input is assigned an attention score based
on the gradient norm, where a higher score indicates a greater impact of that word on the LLM's output.

Ø After applying various complex prompts to the inputs, LLM’s attention gradually shifted from malicious
queries to prompt contexts in order to generate a response that conforms to the user’s request better,
resulting in the failure of safety measures

Analyses

6

l Why do LLMs perform worse on discriminative tasks than on generative tasks?

Ø First, LLM is used to extract the semantic representation of each response in the judgment test set,
where the responses are divided into two categories: harmful and harmless. Then the intra-class
distance and inter-class distance are calculated

Ø LLM safety performance in the discriminative task is positively correlated with its representation
modeling ability for harmful and harmless content

l Benchmark: We are the first to propose the LLM safety generalization problem
and construct a multi-dimensional safety evaluation benchmark (SG-Bench) to
evaluate the generalization of safety-aligned LLMs on diverse test tasks and
prompt types.

l Study: We ran a comprehensive empirical analysis of both proprietary and open-
source LLMs using SG-Bench, including (1) Evaluating the safety performace of
safety-aligned LLMs on diverse tasks, (2) Studying the effect of prompt types on
LLM safety performance, (3) Conducting qualitative analyses to explain the
reason for poor LLM safety generalization.

(1) Exploiting findings in this work to guide safety alignment

(2) Synthesize malicious instructions and jailbreak attack
prompts in an automatic way

(3) Safety evaluation and improvement in specific areas
(privacy protection, code security)

7

Conclusion

Future Work

