

DetectRL: Benchmarking LLM-Generated Text Detection in Real-World Scenarios

Junchao Wu, Runzhe Zhan, Derek F. Wong, Shu Yang, Xinyi Yang, Yulin Yuan, Lidia S. Chao *NLP2CT Lab, University of Macau*

RL stands for Real-world LLM & Reinforcement Learning, DetectRL aims to enhance the development of detectors that perform effectively in real-world scenarios, thereby improving their overall effectiveness, similar to the principles of reinforcement learning.

Background

- The critical task of detecting text generated by large language models.
- Detection capabilities of current detectors have reached impressive levels.

Motivation

- Previous popular benchmarks primarily focused on idealized test data.
- The reliability of existing detectors in **real-world applications** remains **underexplored**.

Research Questions

(1) How do **SOTA** LLM-generated text detectors perform in **real-world application scenarios**?

(2) What **real-world factors** influence the performance of detectors and to what extent?

We investigate these questions by introducing **DetectRL**, a novel benchmark for real-world LLM-generated text detection.

Our Benchmark: DetectRL

Pipeline of Benchmark Framework

- High-risk and abuse-prone writing domain
- Widely-used and powerful LLMs
- Various Attacks align with practical applications
- Text with varying interval lengths
- Balanced sample distributions across domains, LLMs, and attack types in all test scenarios.

Our Benchmark: DetectRL

Data Sources

- The second se
- XSum Dataset (news writing)
- Writing Prompts (creative writing)
- Yelp Reviews (social media)

Generative Models

- GPT-3.5-Turbo
- The palm-2-bison
- A Claude-instant
- 🔿 Llama-2-70b

Our Benchmark: DetectRL

Attacks Methods

Attacks Typts	Sub Types	Methods	
Direct Prompt	Direct Prompt	Prompt	
Prompt Attacks	Few-Shot Prompt	Prompt	Verieus Dremate Lleege
I Tompt Mucks	ICO Prompt	Prompt	various Prompts Usage
	DIPPER Paraphrase ^	DIPPER Paraphraser	
Paraphrase Attacks	Polish Using LLMs	Prompt	Human Revision
_	Back Translation	Google Translation API	riaman nevision
-	Character-Level Perturbation	TextFooler	
Perturbation Attacks	Word-Level Perturbation	DeepBugWord	Writing Errors
	Sentence-Level Perturbation	TextBugger	
Doto Mining	Multi-LLMs Mixing	Sentence Mixing	Data Mining
Data Mixing	LLM-Centered Mixing	Sentence Mixing	Data wixing

Benchmark Statistics and Task definition

Teels	Catting	Cub Catting	Trai	ning	Test
Task	Setting	Sub Setting	Supervised	Zero-Shot	Test
		Academic	25,990	2,008	2,008
	Multi-	News	25,992	2,008	2,008
	Domain	Creative	25,985	2,008	2,008
		Social Media	25,984	2,008	2,008
		GPT-3.5-turbo	25,987	2,008	2,008
Task 1	Multi-	Claude-instant	25,990	2,008	2,008
	LLM	PaLM-2-bison	25,987	2,008	2,008
		Llama-2-70b	25,987	2,008	2,008
		Direct	20,384	2,016	2,016
	Multi-	Prompt	31,568	2,032	2,032
	Attack	Paraphrase	42,767	2,016	2,016
		Perturbation	42,784	2,016	2,016
		Data Mixing	401,184	2,008	2,008
		Academic	25,990	2,008	6,024
	Domain	News	25,992	2,008	6,024
	Generalization	Creative	25,985	2,008	6,024
		Social Media	25,984	2,008	6,024
		GPT-3.5-turbo	25,987	2,008	6,024
Task 2	LLM	Claude-instant	25,990	2,008	6,024
	Generalization	PaLM-2-bison	25,987	2,008	6,024
		Llama-2-70b	25,987	2,008	6,024
		Direct	20,384	2,016	6,048
	Attack	Prompt	31,568	2,032	6,096
	Generalization	Paraphrase	42,767	2,016	6,048
		Perturbation	42,784	2,016	6,048
		Data Mixing	401,184	2,008	6,024
Tack 3	Varying	Training-Time	16,200	16,200	900
105K J	Text Length	Test-Time	900	900	16,200
		Direct	20,384	2,016	2,016
	Human	Paraphrase	42,767	2,016	2,016
Task 4	Writing	Perturbation	42,784	2,016	2,016
		Data Mixing	42,788	2,012	2,012

Task 1: In-domain robustness

To evaluate the **foundational performance** of detectors in different domains, generators, and attack strategies.

Task 2: Generalization

To evaluate the detector's ability to handle **outof-distribution** samples within each category.

Task 3: Varying text length

To evaluates how training-time and test-time **text length** affects the performance of detectors.

Task 4: Real-world human writing

To evaluates the impact of **human-written factors** on the performance of detectors.

Evaluation Metrics

AUROC

• considers both True Positive Rate (TPR) and False Positive Rate (FPR).

F1 Score

• considers both Precision and Recall.

Detection Methods

Zero-shot Methods

- Log-Likelihood (Gehrmann et al., 2019)
- Rank (Gehrmann et al., 2019)
- Log-Rank (Gehrmann et al., 2019)
- LRR (Su et al., 2023)
- NPR (Su et al., 2023)
- Revise-Detcet. (Zhu et al., 2023)
- DetectGPT (Mitchell et al., 2023)
- DNA-GPT (Yang et al., 2024)
- Binoculars (Hans et al., 2024)
- Fast-DetectGPT (Bao et al., 2024)

Supervised Classifiers

- RoBERTa-Base (Liu et al., 2019)
- RoBERTa-Large (Liu et al., 2019)
- XLM-RoBERTa-Base (Conneau et al., 2019)
- XLM-RoBERTa-Large (Conneau et al., 2019)

Discussion: Leaderboard

- Supervised detectors consistently outperform zero-shot detectors.
- For zero-shot detectors, **Binoculars** ranked highest.
- DetectGPT and similar advanced detectors are unreliable.

	Leaderboard: LLM-Generated Text Detector in Real-World Scenarios													
Tasks Settings \rightarrow	Mul	ti-	Mult	ti-	Mult	ti-	Gene	eralizat	tion	Tiı	ne	Hum	an	Ava
	Dom	ain	LLN	LLM		Attack		Oomain LLM Attack		Train	Test	Writing		Avg.
Detectors \downarrow	AUROC	F_1	AUROC	F_1	AUROC	F_1	F_1	F_1	F_1	F_1	F_1	AUROC	F_1	F_1
Rob-Base	99.98	99.75	99.93	99.58	99.56	97.66	83.00	91.81	92.37	79.99	74.00	97.34	94.31	93.02
Rob-Large	99.78	98.87	95.16	90.03	99.87	99.03	77.20	82.85	83.96	86.08	85.23	96.68	94.63	91.49
X-Rob-Base	99.92	99.34	99.14	98.17	98.49	96.07	75.97	92.73	90.58	84.25	73.83	93.43	90.29	91.71
X-Rob-Large	99.01	97.44	97.40	93.47	99.31	97.75	76.14	85.89	73.42	86.35	79.83	97.21	94.43	90.59
Binoculars	83.95	78.25	83.30	74.83	85.05	78.53	77.47	74.10	74.70	73.82	74.34	90.68	85.98	79.61
Revise-Detect.	67.24	60.82	66.36	53.72	70.89	57.24	54.50	53.28	50.63	65.71	67.96	83.29	82.16	64.13
Log-Rank	64.43	57.53	63.75	54.18	68.52	55.15	55.10	52.78	51.28	57.44	59.74	88.46	83.85	62.48
LRR	65.47	55.45	64.93	53.01	68.53	57.99	54.61	52.73	57.41	57.09	58.15	85.99	80.56	62.46
Log-Likelihood	63.71	56.36	62.97	53.13	67.97	54.38	53.37	51.77	50.73	57.92	59.28	88.48	83.75	61.83
DNA-GPT	64.92	55.83	64.36	51.09	68.36	53.36	51.51	47.09	41.98	57.63	62.43	87.80	82.77	60.70
Fast-DetectGPT	58.52	48.07	59.58	46.55	60.70	50.63	48.35	36.56	49.47	61.31	55.08	76.03	68.47	55.33
Rank	51.34	44.97	50.33	42.06	57.08	48.83	42.61	41.49	38.84	41.67	46.65	83.86	80.00	51.52
NPR	48.37	41.41	47.27	40.04	53.49	45.22	38.58	38.83	36.10	37.60	42.17	80.03	75.98	48.08
DetectGPT	34.43	21.52	34.93	14.80	36.19	19.15	11.54	13.11	11.84	35.78	34.69	60.86	48.76	29.05
Entropy	46.02	27.40	46.97	34.25	43.75	24.69	25.06	31.07	16.53	13.38	15.99	22.39	16.60	28.01

Discussion: Significant Challenge

• Incorporating a mix distribution of domains, LLMs, and attack types increases the testing pressure of zero-shot method.

Leaderboard: LLM-Generated Text Detector in Real-World Scenarios														
Tasks Settings \rightarrow	Mul	ti-	Mul	ti-	Mult	ti-	Gen	eralizat	tion	Tiı	ne	Hum	an	Ava
	Doma	ain	LLN	Λ	Atta	ck	Domain LLM Attack		Train Test		Writing		Avg.	
Detectors \downarrow	AUROC	F_1	AUROC	F_1	AUROC	F_1	F_1	F_1	F_1	$ F_1$	F_1	AUROC	F_1	F_1
Rob-Base	99.98	99.75	99.93	99.58	99.56	97.66	83.00	91.81	92.37	79.99	74.00	97.34	94.31	93.02
Rob-Large	99.78	98.87	95.16	90.03	99.87	99.03	77.20	82.85	83.96	86.08	85.23	96.68	94.63	91.49
X-Rob-Base	99.92	99.34	99.14	98.17	98.49	96.07	75.97	92.73	90.58	84.25	73.83	93.43	90.29	91.71
X-Rob-Large	99.01	97.44	97.40	93.47	99.31	97.75	76.14	85.89	73.42	86.35	79.83	97.21	94.43	90.59
Binoculars	83.95	78.25	83.30	74.83	85.05	78.53	77.47	74.10	74.70	73.82	74.34	90.68	85.98	79.61
Revise-Detect.	67.24	60.82	66.36	53.72	70.89	57.24	54.50	53.28	50.63	65.71	67.96	83.29	82.16	64.13
Log-Rank	64.43	57.53	63.75	54.18	68.52	55.15	55.10	52.78	51.28	57.44	59.74	88.46	83.85	62.48
LRR	65.47	55.45	64.93	53.01	68.53	57.99	54.61	52.73	57.41	57.09	58.15	85.99	80.56	62.46
Log-Likelihood	63.71	56.36	62.97	53.13	67.97	54.38	53.37	51.77	50.73	57.92	59.28	88.48	83.75	61.83
DNA-GPT	64.92	55.83	64.36	51.09	68.36	53.36	51.51	47.09	41.98	57.63	62.43	87.80	82.77	60.70
Fast-DetectGPT	58.52	48.07	59.58	46.55	60.70	50.63	48.35	36.56	49.47	61.31	55.08	76.03	68.47	55.33
Rank	51.34	44.97	50.33	42.06	57.08	48.83	42.61	41.49	38.84	41.67	46.65	83.86	80.00	51.52
NPR	48.37	41.41	47.27	40.04	53.49	45.22	38.58	38.83	36.10	37.60	42.17	80.03	75.98	48.08
DetectGPT	34.43	21.52	34.93	14.80	36.19	19.15	11.54	13.11	11.84	35.78	34.69	60.86	48.76	29.05
Entropy	46.02	27.40	46.97	34.25	43.75	24.69	25.06	31.07	16.53	13.38	15.99	22.39	16.60	28.01

Discussion: In-domain Robustness

• Text with more formal stylistic nature poses a greater challenge.

Metrics \rightarrow	AUROC	F_1	AUROC	F_1	AUROC	F_1	AUROC	F_1	AUROC	F_1	AUROC	F_1	
Multi-Domain													
$\textbf{Domain Settings} \rightarrow$	-		ArX	iv	XSu	m	Writing		Review		Avg	; .	
Log-Likelihood	-		65.35	57.55	45.68	41.32	68.00	59.38	75.84	67.22	63.22	56.37	
Entropy	-		48.39	29.71	67.84	57.23	39.06	20.55	28.82	02.14	46.53	27.66	
Rank	-		57.17	54.62	36.87	22.47	56.26	50.90	55.08	51.90	51.09	44.97	
Log-Rank	-		67.01	60.09	46.74	42.60	67.58	57.57	76.40	69.88	64.43	57.78	
LRR	-		70.54	61.34	50.09	38.38	64.65	53.09	76.61	68.99	65.47	55.70	
NPR	-		53.85	49.65	34.59	18.31	54.96	52.30	50.09	45.39	48.87	41.16	
DetectGPT	-		22.15	00.00	12.21	00.00	58.95	50.83	44.43	35.25	34.44	21.02	
DNA-GPT	-		67.41	58.30	64.22	45.09	69.04	58.25	78.17	69.28	69.71	57.23	
Revise-Detect.	-		70.40	37.51	50.34	46.07	73.24	64.29	75.01	68.71	67.75	54.65	
Binoculars	-		84.03	76.77	77.39	72.18	94.38	79.73	90.00	84.32	86.95	78.75	
Fast-DetectGPT	-		43.69	24.46	39.19	28.39	74.21	67.84	77.02	71.62	58.03	48.08	
Avg.	-		59.09	46.36	47.74	37.45	65.48	55.88	66.13	57.70	59.68	49.39	
Rob-Base	-		100.0	100.0	99.99	99.85	99.99	99.65	99.97	99.50	99.99	99.75	
Rob-Large	-		99.99	99.90	99.85	98.95	99.54	97.73	99.76	98.90	99.54	98.87	
X-Rob-Base	-		100.0	100.0	99.97	99.55	99.84	98.76	99.88	99.05	99.92	99.59	
X-Rob-Large			99.98	99.85	99.84	<u>98.95</u>	99.85	98.31	96.40	92.66	99.23	97.19	
Avg.	-		99.99	99.93	99.91	99.32	99.80	98.61	99.00	97.52	99.67	98.85	

Discussion: In-domain Robustness

• Difference in statistical patterns of LLMs pose significant challenges to detectors.

Multi-LLM												
LLM Settings \rightarrow	-	GPT	-3.5	Claude		PaLM-2		Llama-2		Av	g.	
Log-Likelihood	-	62.89	57.80	43.32	28.10	70.03	60.73	75.65	65.90	62.47	53.63	
Entropy	-	46.84	23.29	52.25	30.42	45.34	16.56	43.48	66.75	46.98	34.26	
Rank	-	52.19	49.32	41.68	22.78	50.40	41.74	57.05	54.40	50.33	42.56	
Log-Rank	-	62.84	56.87	43.32	30.12	70.89	63.09	77.97	66.66	63.76	54.68	
LRR	-	61.61	52.12	43.30	18.91	71.17	65.51	83.65	75.51	64.43	53.01	
NPR	-	50.29	43.81	41.64	32.91	44.64	34.77	52.53	48.68	47.78	40.54	
DetectGPT	-	43.46	26.27	32.86	12.56	26.72	00.00	36.71	20.40	34.44	14.81	
DNA-GPT	-	61.87	55.04	48.88	25.67	71.48	60.77	75.22	62.89	64.86	51.59	
Revise-Detect.	-	70.10	62.72	49.87	27.28	69.84	59.03	75.65	65.87	66.87	53.73	
Binoculars	-	88.14	82.50	55.15	39.35	93.30	88.20	96.64	92.30	83.31	75.59	
Fast-DetectGPT	<u> </u>	65.56	59.55	30.01	00.00	65.99	57.58	76.79	69.08	59.59	46.55	
Avg.	-	60.52	51.75	43.84	24.37	61.80	49.81	68.30	62.58	58.62	47.35	
Rob-Base	-	99.97	99.70	99.98	99.80	99.94	99.40	99.84	99.45	99.93	99.59	
Rob-Large	-	99.77	98.86	96.23	92.48	97.93	92.64	86.72	76.17	95.66	90.54	
X-Rob-Base	-	99.88	99.45	98.26	97.48	98.77	97.19	99.69	98.57	99.15	98.17	
X-Rob-Large	-	99.55	97.56	91.67	84.24	98.73	94.43	99.66	97.67	97.65	93.73	
Avg.		99.79	98.89	96.53	93.50	98.84	95.91	96.47	92.96	98.09	95.50	

Discussion: In-domain Robustness

• Perturbation attacks represent the most significant threat to current detectors.

Multi Attack												
Attack Settings \rightarrow	Dire	ect	Pror	npt	Para	ph.	Pert	Perturb		Mixing		g.
Log-Likelihood	89.25	82.09	86.87	78.16	64.55	57.59	35.51	00.78	63.70	53.31	67.97	54.38
Entropy	26.47	00.00	26.18	00.00	48.12	26.01	68.62	68.95	49.37	28.52	43.75	24.69
Rank	83.50	76.27	81.21	72.86	60.60	52.60	08.04	00.00	52.05	42.46	57.08	48.83
Log-Rank	89.25	81.45	86.35	77.51	64.69	59.17	37.71	00.78	64.63	56.86	68.52	55.15
LRR	85.83	77.40	80.80	74.30	63.99	55.20	45.91	29.27	66.12	53.81	68.53	57.99
NPR	77.98	71.61	77.15	70.63	56.94	46.25	06.78	00.00	48.63	37.65	53.49	45.22
DetectGPT	52.84	40.90	51.83	37.98	31.79	16.89	18.21	00.00	26.28	00.00	36.19	19.15
DNA-GPT	88.01	80.78	85.62	77.47	65.61	54.94	40.45	02.73	62.14	50.89	68.77	53.76
Revise-Detect.	86.88	79.61	84.89	76.21	67.26	62.03	43.98	07.56	65.27	54.39	69.26	56.76
Binoculars	94.87	89.73	93.45	88.12	88.34	81.56	76.89	69.34	89.12	83.67	88.53	82.48
Fast-DetectGPT	79.56	72.45	78.43	70.34	70.12	62.89	49.56	41.23	67.23	59.78	68.58	61.34
Avg.	78.04	70.33	76.68	67.85	60.89	52.90	38.76	30.54	60.41	52.43	62.56	54.41
Rob-Base	99.87	99.60	99.78	99.47	99.67	99.12	98.32	97.45	99.12	98.76	99.35	98.88
Rob-Large	98.73	97.83	98.45	97.56	97.89	96.78	96.12	94.67	97.56	96.34	97.75	96.64
X-Rob-Base	99.56	99.12	99.23	99.01	98.89	98.34	98.56	97.89	99.01	98.56	98.85	98.58
X-Rob-Large	99.45	98.67	98.89	97.98	98.23	97.67	97.89	96.34	98.67	97.89	98.63	97.71
Avg.	99.40	98.80	99.09	98.50	98.67	97.98	97.22	96.09	98.34	97.89	98.54	97.85

Discussion: Generalization of Detectors

- Less formal stylistic data to enhance generalization.
- Texts generated by LLMs with **similar statistical patterns** generally perform well with each other.
- Perturbation attacks poses the greatest challenge to generalization.

$\textbf{Detectors} \rightarrow$		LRR	(Zero-sh	ot)		Fa	st-Detec	tGPT (Ze	ero-shot)			Rob-Bas	se (Super	vised)	
						Mul	ti-Doma	in							
$\textbf{Train} \downarrow \textbf{Eval} \rightarrow \mid$	ArXiv	XSum	Writing	Review	Avg.	ArXiv	XSum	Writing	Review	Avg.	ArXiv	XSum	Writing	Review	Avg.
ArXiv	57.55	40.88	38.44	55.81	48.17	24.46	23.71	59.67	60.17	42.00	100.0	75.90	77.68	70.69	81.06
XSum	57.45	41.32	39.08	55.81	48.41	28.43	28.39	62.99	63.08	45.72	68.43	99.85	71.79	67.17	76.81
Writing	61.14	46.31	59.38	67.98	58.70	34.81	33.60	67.84	68.30	51.13	78.58	72.72	99.65	94.24	86.29
Review	61.49	47.02	57.12	67.22	58.21	40.70	37.66	68.25	71.62	54.55	82.64	84.15	85.10	99.50	87.84
Multi-LLM											1				
$\textbf{Train} \downarrow \textbf{Eval} \rightarrow \mid$	GPT-3.5	PaLM-2	Claude	Llama-2	Avg.	GPT-3.5	PaLM-2	Claude	Llama-2	Avg.	GPT-3.5	PaLM-2	Claude	Llama-2	Avg.
GPT-3.5	52.12	61.79	24.70	75.34	53.48	59.55	59.56	12.96	69.93	50.50	99.97	70.34	62.90	94.68	81.97
PaLM-2	52.36	65.51	26.23	75.58	54.92	55.77	57.58	08.20	68.43	47.49	99.25	99.40	93.43	99.25	97.83
Claude	45.73	57.66	18.91	72.67	48.74	00.19	00.00	00.00	01.18	00.34	96.83	83.92	99.80	89.77	92.58
Llama-2	52.14	62.23	25.25	75.51	53.78	56.28	57.74	08.65	69.08	47.93	99.45	93.02	87.56	99.45	94.87
						Mu	lti-Attac	:k							
$\textbf{Train} \downarrow \textbf{Eval} \rightarrow $	Prompt	Paraph.	Perturb	Mixing	Avg.	Prompt	Paraph.	Perturb	Mixing	Avg.	Prompt	Paraph.	Perturb	Mixing	Avg.
Direct	74.23	58.35	30.69	56.42	54.92	64.01	40.45	41.02	31.81	44.32	95.73	94.91	64.32	89.07	86.00
Prompt	74.30	58.35	30.81	56.42	54.97	64.00	39.94	40.40	31.25	43.89	97.18	94.98	86.18	92.92	92.81
Paraphrase	70.22	55.20	20.25	51.26	49.23	61.54	38.32	36.86	27.90	41.15	93.66	98.26	78.81	89.38	90.02
Perturb	71.81	58 22	29 27	55 19	53 62	64 01	40 45	41 14	31.93	44 38	87.01	91 46	98.66	91 38	92.12
Mixing	71.02	55.77	24.01	53.81	51.15	65.89	46.38	45.78	40.93	49.74	93.46	91.93	95.26	93.64	93.57

Discussion: Impact of text length

- Shorter training samples for stronger zero-shot detectors.
- Longer test samples for better zero-shot detection, but not too long for supervised methods.

Discussion: Impact of real-world human writing

- Paraphrase attacks and data mixing have **minimal impact** on zero-shot detectors, but paraphrase attacks can **confuse** supervised detectors.
- Perturbation attacks on human-written texts appeared to enhance the discernment capabilities of zero-shot detectors.

Settings $ ightarrow$	Dire	ct	Paraphra	se Attack	Perturbat	ion Attack	Data M	ixing	Avg	•
Detectors \downarrow	AUROC	F_1	AUROC	F_1	AUROC	F_1	AUROC	F_1	AUROC	F_1
				Zero-sho	t Detectors					
Log-Likelihood	89.25	82.09	76.77	74.28	99.53	97.76	88.40	80.88	88.48	83.75
Entropy	26.47	00.00	27.15	00.00	03.37	00.00	32.58	66.40	22.39	16.60
Rank	83.50	76.27	72.14	74.13	99.63	98.13	80.17	71.48	83.86	80.00
Log-Rank	89.25	81.45	76.78	75.17	99.49	97.57	88.32	81.23	88.46	83.85
LRR	85.83	77.40	76.05	74.46	98.09	94.78	83.99	75.60	85.99	80.56
NPR	77.98	71.61	69.82	70.60	98.35	95.51	73.97	66.22	80.03	75.98
DetectGPT	52.84	40.90	68.45	73.45	87.95	79.74	34.20	00.98	60.86	48.76
DNA-GPT	88.01	80.78	77.19	75.95	98.81	95.83	87.40	76.55	87.85	82.27
Revise-Detect.	86.88	79.61	65.39	73.65	98.96	95.48	85.52	77.37	84.18	81.52
Binoculars	94.75	88.10	80.00	74.76	98.26	94.87	93.80	88.32	91.70	86.51
Fast-DetectGPT	77.28	68.79	77.18	70.13	84.43	74.45	65.23	60.53	76.03	68.47
Avg.	77.45	67.90	69.72	66.96	87.89	84.01	73.96	67.77	77.25	71.66
				Supervise	d Detectors					
Rob-Base	99.77	98.10	89.82	80.98	99.99	99.65	99.81	98.51	97.34	94.31
Rob-Large	99.77	98.95	87.01	80.42	99.99	99.95	99.95	99.20	96.68	94.63
X-Rob-Base	98.36	96.20	81.93	75.06	99.96	99.30	93.47	90.62	93.43	90.29
X-Rob-Large	99.79	98.31	89.07	80.32	99.99	99.90	99.82	99.20	97.21	94.43
Avg.	99.42	97.89	86.95	79.19	99.98	99.70	98.26	96.88	96.16	93.41

Conclusion

- DetectRL, a **novel benchmark** designed to evaluate the usability of detectors in scenarios that closely resemble real-world applications.
- Reveal the **primary reasons** why existing detectors for LLM-generated texts struggle in practical applications.
- Discussion of the **potential factors** influencing detector performance.
- Provides a data curation framework, which supports the rapid creation of an evolving, comprehensive benchmark aligns with real-world scenarios.

Thanks for listening!

Code & Data:

https://github.com/NLP2CT/DetectRL