EyeGraph

Modularity-aware Spatio Temporal Graph Clustering for **Continuous Event-based Eye Tracking**

Nuwan Bandara¹, Thivya Kandappu¹, Argha Sen², Ila Gokarn³, Archan Misra¹ ¹SMU, ²IIT–Kharagpur, ³SMART

School of Computing and **Information Systems**

Continuous Eye Tracking

Why Fine-grained, High-frequency Eye Tracking?

RGB vs Event Vision

Eye, being the **fastest mechanical organ** in human body, exhibits **rapid** and intricate movements including pupillary acceleration reaching values as high as 24, 000 deg/s²

- Poor temporal resolution
- Higher susceptibility to motion blur and low lighting conditions
- Higher power consumption
- Synchronous and **Dense**

Higher temporal resolution Lower susceptibility to motion blur and low lighting conditions Lower power consumption Asynchronous and Sparse

Event-based Eye Tracking

Approach Set 1: **RGB-guided** Pupil

Localization in Events

Suffers From

Mismatch with asynchronous event data

Dense 2D frames are **inadequate to capture** full temporal and geometric information

Further, both approaches have shortcomings of:

Developed on datasets which lack representativeness of real-world scenarios with varying illuminance and mobility Guided by coarser labels present at fixed timesteps: label sparsity

Approach Set 2: Exclusive Event-based **Pupil Localization**

To address the lack of representativeness of event eye tracking datasets

A large-scale multi-modal near-eye tracking monocular dataset collected while mimicking in-the-wild settings

An unsupervised topologyaware graph-based approach for event-only eye tracking

To address the label sparsity, **RGB-guidance and inadequate 2D** representations

EyeGraph In-the-wild Dataset

Monocularly collected from 40 participants, who are visual stimuliguided, using a wearable event camera attached to a head-mounted device under (1) conventional lab settings, (2) changing ambient illuminance and (3) user mobility

EyeGraph In-the-wild Dataset

- Pupil Tracking as End Goal
- Spatio-Temporal Graph Representation
- **Unsupervised Learning**
- Accompanies **RGB Frame Data**
- Monocular and Multi-modal
- From **40 participants**

- modal investigations
- Allowed and measured **lighting changes**
- Accounts participant mobility

In overall, has nearly **3.3 billion events**, **2 million grayscale images** from event camera and **5 million video frames** from eye tracker (~115GB)

Has Off-the-shelf eye tracker data for cross

Allowed and measured **head-movements**

EyeGraph Method for Eye Tracking

To accurately and continuously record eye movements with high temporal resolution, we (a) process sparse events as asynchronously and temporally evolving graphs, and (b) adopt an unsupervised modularity-aware graph learning to effectively cluster distinct ocular regions as a means for pupil tracking

EyeGraph Method for Eye Tracking

To generate dynamic and temporally evolving spatio-temporal graphs, we propose an adaptive edge construction method which focuses on a Gaussian Mixture Model-based soft clustering approach to spatially group and temporally connect distinct macroscopic parts of the human eye

Our novel topologically guided modularity-aware graph clustering approach balances spatial proximity and temporal continuity of events, while accounting the modular structure of the underlying graph representation, to **reflect the** natural progression of gaze behavior over time

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

EyeGraph Results, Impact and Future

- Achieves tracking performance comparable to supervised approaches while consistently outperforming other unsupervised approaches, even under varying illuminance and mobility
- Future versions with more naturalistic in-the-wild studies in both indoor and outdoor environments so as to capture finer-grained continuous variation in illuminance, and during diverse set of physical activities
- EyeGraph dataset will be instrumental in studying fine-grained pupillary movements for diverse applications while EyeGraph methods will also be useful in other domains such as automotive vision and robotics

THANK YOU

Check out more details and upcoming releases of EyeGraph at

https://eye-tracking-for-physiologicalsensing.github.io/eyegraph/

If needed clarifications, please contact us at

pmnsbandara@smu.edu.sg or thivyak@smu.edu.sg

