Benchmarking the Attribution Quality of Vision Models

Simone Schaub-Meyer

Visual Inference Lab | TU Darmstadt

Stefan Roth

Model

Attribution

R. Hesse, S. Schaub-Meyer, S. Roth — Benchmarking the Attribution Quality of Vision Models

Model

Attribution

R. Hesse, S. Schaub-Meyer, S. Roth — Benchmarking the Attribution Quality of Vision Models

Model

Attribution

No ground truth explanation!

R. Hesse, S. Schaub-Meyer, S. Roth — Benchmarking the Attribution Quality of Vision Models

R. Hesse, S. Schaub-Meyer, S. Roth — Benchmarking the Attribution Quality of Vision Models

R. Hesse, S. Schaub-Meyer, S. Roth — Benchmarking the Attribution Quality of Vision Models

R. Hesse, S. Schaub-Meyer, S. Roth — Benchmarking the Attribution Quality of Vision Models

R. Hesse, S. Schaub-Meyer, S. Roth — Benchmarking the Attribution Quality of Vision Models

- Goldfish

R. Hesse, S. Schaub-Meyer, S. Roth — Benchmarking the Attribution Quality of Vision Models

- Goldfish

R. Hesse, S. Schaub-Meyer, S. Roth — Benchmarking the Attribution Quality of Vision Models

- Goldfish

R. Hesse, S. Schaub-Meyer, S. Roth — Benchmarking the Attribution Quality of Vision Models

R. Hesse, S. Schaub-Meyer, S. Roth — Benchmarking the Attribution Quality of Vision Models

\rightarrow Out-of-domain issues

R. Hesse, S. Schaub-Meyer, S. Roth — Benchmarking the Attribution Quality of Vision Models

\rightarrow Out-of-domain issues \rightarrow Information leakage

R. Hesse, S. Schaub-Meyer, S. Roth — Benchmarking the Attribution Quality of Vision Models

\rightarrow Out-of-domain issues \rightarrow Information leakage \rightarrow Synthetic data

1. Train the model on images with deleted patches

1. Train the model on images with deleted 2. Rank correlation between output drops and attribution strength for each patch patches

1. Train the model on images with deleted 2. Rank correlation between output drops and attribution strength for each patch patches

1. Train the model on images with deleted 2. Rank correlation between output drops and attribution strength for each patch patches

1. Train the model on images with deleted 2. Rank correlation between output drops and attribution strength for each patch patches

 \rightarrow Aligned train and test domains

1. Train the model on images with deleted 2. Rank correlation between output drops and attribution strength for each patch patches

\rightarrow Aligned train and test domains \rightarrow Provably no information leakage

1. Train the model on images with deleted patches

 \rightarrow Aligned train and test domains \rightarrow Provably no information leakage \rightarrow Allows for inter-model comparison

R. Hesse, S. Schaub-Meyer, S. Roth — Benchmarking the Attribution Quality of Vision Models

2. Rank correlation between output drops and attribution strength for each patch

Results **Ranking attribution methods**

- \rightarrow Taking the absolute attributions (abs.) impairs performance
- \rightarrow Intrinsically explainable models (\blacktriangle) achieve the best results

Results **Ranking attribution methods**

- \rightarrow Taking the absolute attributions (abs.) impairs performance
- \rightarrow Intrinsically explainable models (\blacktriangle) achieve the best results

Results **Ranking attribution methods**

 \rightarrow Taking the absolute attributions (abs.) impairs performance \rightarrow Intrinsically explainable models (\blacktriangle) achieve the best results

Results How design choices affect attribution quality

→ Deeper models have lower attribution quality

Results How design choices affect attribution quality

 \rightarrow There is an accuracy-attribution quality tradeoff

Results How design choices affect attribution quality

 \rightarrow There is an accuracy-attribution quality tradeoff

hessian.Al

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 866008). The project has also been supported in part by the State of Hesse through the cluster projects "The Third Wave of Artificial Intelligence (3AI)" and "The Adaptive Mind (TAM)".

Benchmarking the Attribution Quality of Vision Models

Robin Hesse

Simone Schaub-Meyer

Stefan Roth

Visual Inference Lab | TU Darmstadt

Project page

https://github.com/visinf/idsds