HIDDEN IN PLAIN SIGHT: Evaluating Abstract

Shape Recognition in Vision-Language Models

Arshia Hemmat¹, Adam Davies*², Tom A. Lamb*¹, Jianhao Yuan*¹, Philip Torr¹, Ashkan Khakzar¹, Francesco Pinto¹

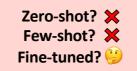
*Equal Contribution. ¹University of Oxford. ²University of Illinois at Urbana-Champaign

Problem

- Do image classifiers rely on shape or texture?
- Limitations of existing benchmarks:
 - o Lack of coherent, naturalistic, complex visual scenes.
 - o Missing shape information, poor fine-grained details.

Approach

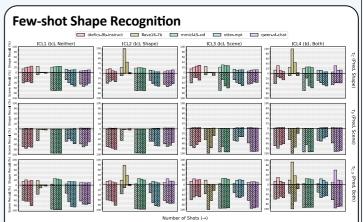
To address these issues, we introduce IllusionBench:

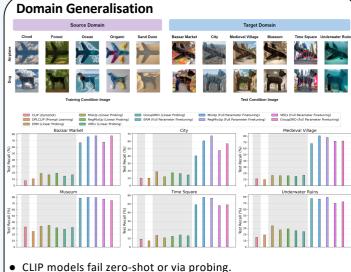

- Use ControlNet to condition Stable Diffusion on...
 - o Conditioning images (binary masks of target shape).
 - Scene description (e.g., "medieval village" or "sand dune").

Zero-shot Shape Recognition IlusionBench-LOGO IlusionBench-ICON Stylized ImageNe

- SOTA VLMs biased towards scene/texture.
- Shape recognition gap between open and closed-source models.

Can SOTA vision-language models recognise these shapes while ignoring scene/texture?




PAPFR

WEBSITE

- ICL does not consistently solve the problem.
- VLMs still biased towards scene/texture.

- Can be fine-tuned to learn domain-generalisable features.