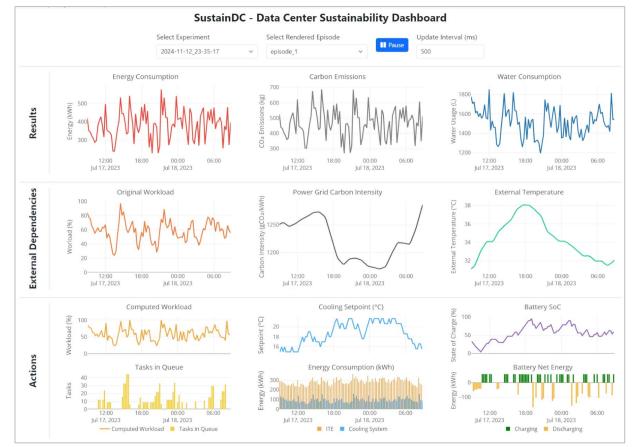


Hewlett Packard Enterprise

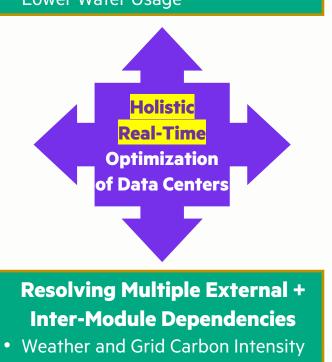

SustainDC: Benchmarking for Sustainable Data Center Control

Avisek Naug · Antonio Guillen-Perez · Ricardo Luna Gutierrez · Vineet Gundecha · Cullen Bash · Sahand Ghorbanpour · Sajad Mousavi · Ashwin Ramesh Babu · Dejan Markovikj · Lekhapriya Dheeraj Kashyap · Desik Rengarajan · Soumyendu Sarkar

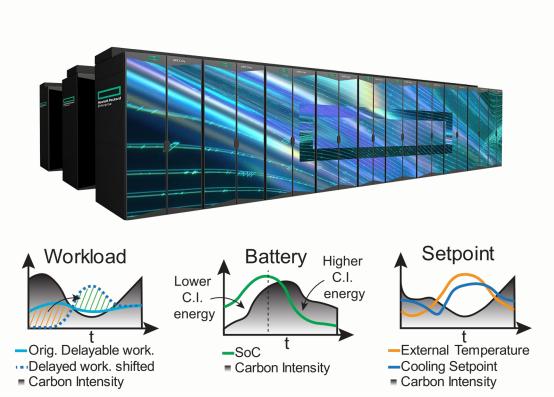
Hewlett Packard Labs @ Hewlett Packard Enterprise

NeurIPS 2024

Motivation


Holistic Real-time Data Center Optimization for Sustainability with increased Al workloads

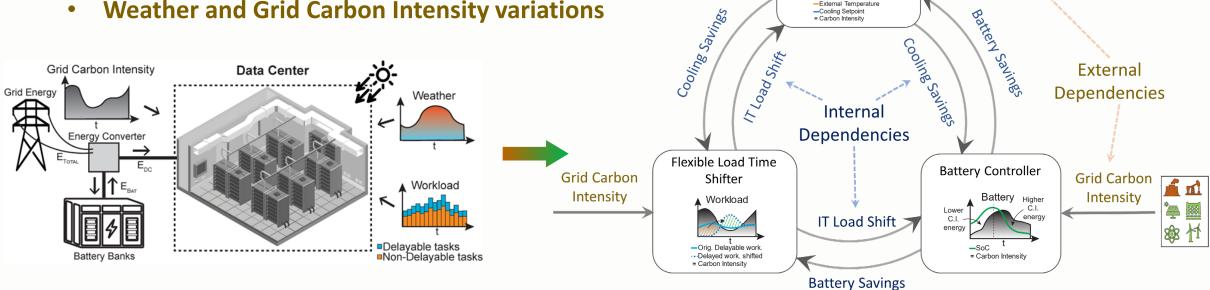
Sustainability Goals


- Lower Carbon Emissions
- Lower Energy Consumption
- Lower Water Usage

Paradigm Shift in Energy Optimization with Multiple controls

- Optimize Cooling with IT Energy
- Schedule Flexible Loads
- Energy Storage
- Multi-agent Real-time Optimization

NeurIPS 2024: SustainDC: Benchmarking for Sustainable Data Center Control


NEURAL INFORMATION PROCESSING SYSTEMS

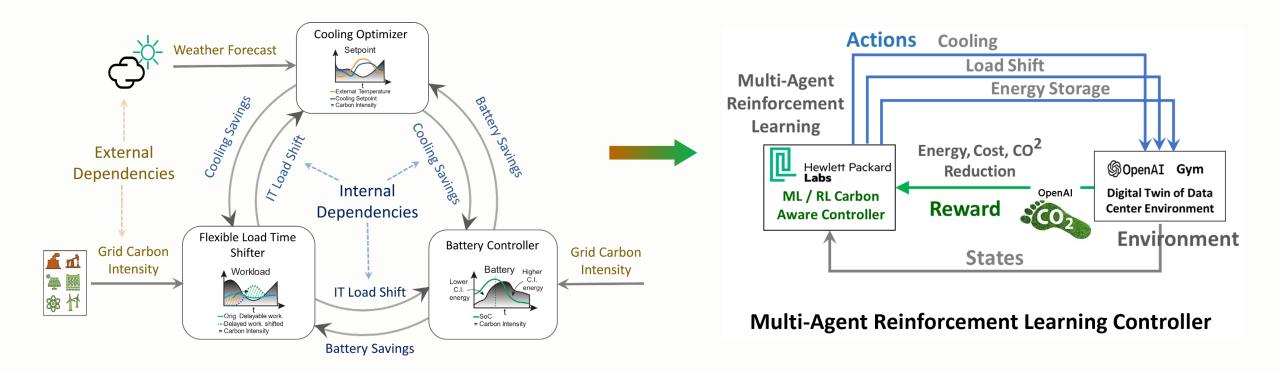
Problem: Control Challenges

Holistic Optimization requires resolving multiple Internal and External Dependencies:

- **Internal Dependencies**
 - **Cooling & IT Energy**
 - **Dynamic Flexible Workload Scheduling**
 - **Energy Storage** •
- **External Dependencies**
 - Weather and Grid Carbon Intensity variations

Cooling Optimizer

Setpoin


External Temperature

Weather Forecast

Solution

Holistic Optimization requires Multi-agent Multi-objective Reinforcement Learning Control

SustainDC: Comprehensive RL Benchmark Environment

Customizable RL Environment for Optimization

- Workload Environment
- Data Center Cooling Environment

ls.t

dc,t

RL agents in SustainDC

• Battery Environment

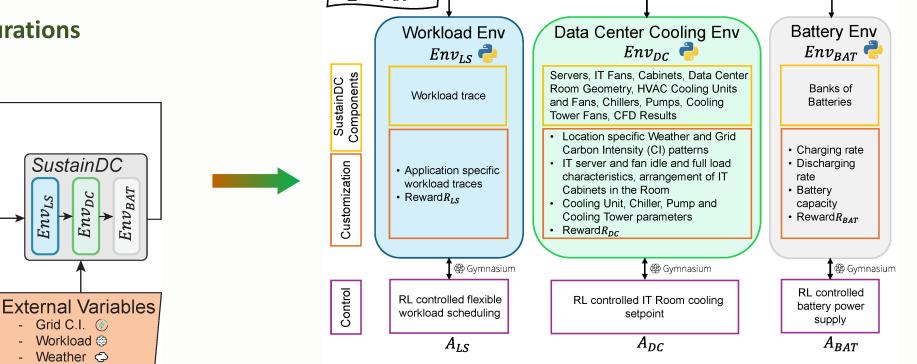
Agent

Agent

ls.t

ls.t

dc,i


 $\dot{r}_{dc,t}$

bat.t

bat,t Agen

S

• Customizable configurations

dc_config.json

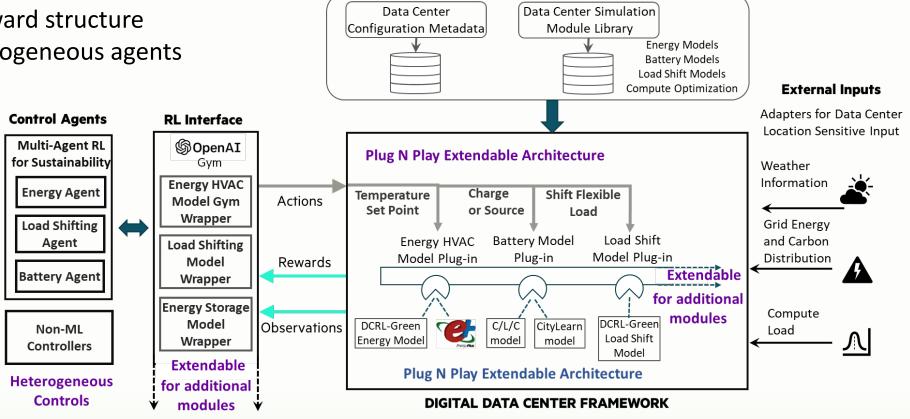
SustainDC with the three main environments - Workload Env, Data Center Cooling Env, and Battery Env along with their customizable components and control actions

3 Interacting Control Problems & RL Agents

- Workload scheduling decisions
- Cooling setpoint optimization
- Battery charging/discharging strategy

 $Agent_{LS}:(SC_t \times CI_t \times D_t \times B_t) \to A_{lst}$ Control **Optimization Strategy** Figure Agent Actions $Agent_{DC} : (SC_t \times t_{db} \times t_{room} \times E_{hvac} \times E_{it} \times CI_t) \to A_{dc.t}$ Knob Workload $Agent_{BAT} : (SC_t \times Bat SoC \times CI_t) \to A_{bat t}$ Shift tasks to periods of Delay- $Env_{LS}:(B_t \times A_{ls,t}) \to \hat{B}_t$ 0 Store Delayable Tasks tolerant lower CI/lower external tem-Compute All Immediate Tasks 1 $Agent_{LS}$ $Env_{DC}: (\hat{B}_t \times t_{db} \times t_{room} \times A_{dc\,t}) \to (E_{hvac}, E_{it})$ workload perature/other variables to re-2 Maximize Throughput scheduling duce the CFP. -Orig. Delayable work Env_{BAT} : $(Bat SoC \times A_{bat t}) \rightarrow (Bat SoC, E_{bat})$ ---Delayed work. shifted $CFP_t = (E_{hvac} + E_{it} + E_{bat}) \times CI_t$ Carbon Intensity Setpoint $\left(\theta_{LS}, \theta_{DC}, \theta_{BAT}\right) = argmin\left(\sum_{t=1}^{t-t} CFP_t\right)$ Optimize cooling by adjust-Decrease Setpoint ing cooling setpoints based Cooling Maintain Setpoint $Agent_{DC}$ Setpoint on workload, external tempera-**Increase Setpoint** ture, and CI. -External Temperature $(r_{LS}, r_{DC}, r_{BAT}) = \left(- (CFP_t + LS_{Penalty}), -(E_{hvac,t} + E_{it,t}), -(CFP_t) \right)$ -Cooling Setpoint Carbon Intensity leve Batterv Battery charging le Carbon Intensity $R_{LS} = \alpha * r_{LS} + (1 - \alpha)/2 * r_{DC} + (1 - \alpha)/2 * r_{BAT}$ Store energy when 0 Charge Battery Battery CI/temperature/workload/other $R_{DC} = (1 - \alpha)/2 * r_{LS} + \alpha * r_{DC} + (1 - \alpha)/2 * r_{BAT}$ 1 Hold Energy $Agent_{BAT}$ energy supis low and use stored energy ply/store 2 Discharge Battery when is high to reduce CFP. $R_{BAT} = (1 - \alpha)/2 * r_{LS} + (1 - \alpha)/2 * r_{DC} + \alpha * r_{BAT}$ Charging Discharging

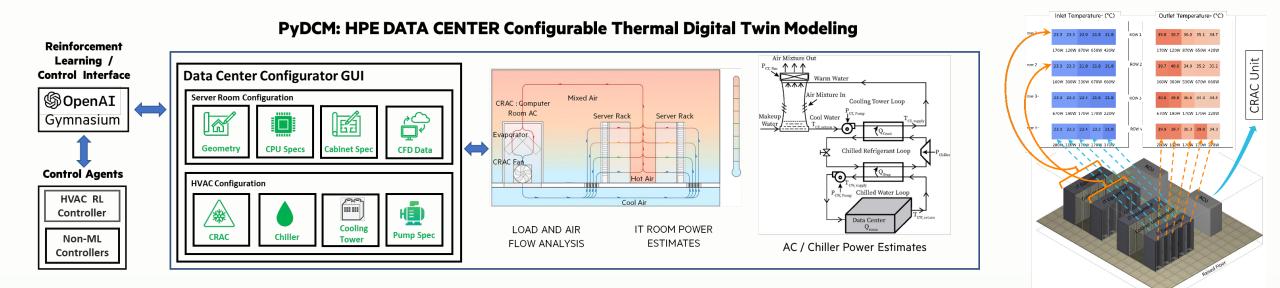
NEURAL INFORMATION


PROCESSING SYSTEMS

SustainDC Extendable Plug-in Framework

Framework for RL and other ML control for Data Centers

- Plug-and-play design
- Extendable modular architecture
- Customizable reward structure
- Support for heterogeneous agents


Custom Data Center Thermal Model

Current version support HVAC cooling

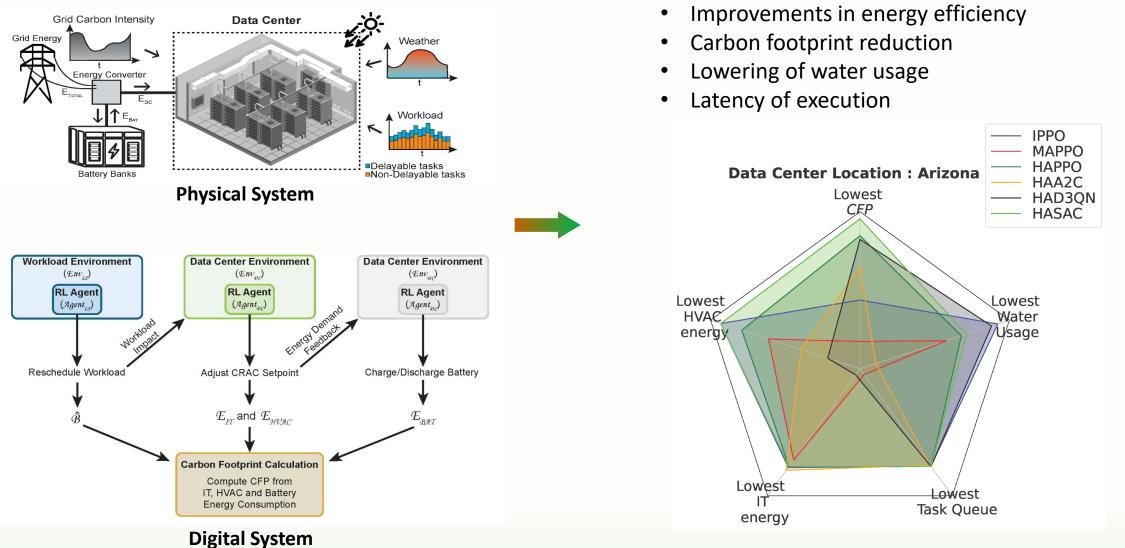
Will be extended to Liquid Cooling

- □ Modular, scalable, and highly customizable Data Center model suitable for testing a broad range of DC design parameters.
- Offers a unique Python-based platform that can be easily adapted for fast prototyping and control optimization by the energy / ML community.
- Serves as a powerful tool for the ML community to test ML / Reinforcement Learning optimization for DC models aimed at sustainability.

Experiments: Data Center Locations with variations

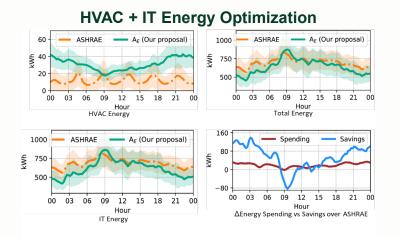
[Location	Typical Weather	Carbon Emissions		
[Arizona	Hot, dry summers; mild winters	High avg CI, High variation		
	California	Mild, Mediterranean climate	Medium avg CI, Medium variation		
	Georgia	Hot, humid summers; mild winters	High avg CI, Medium variation		
	Illinois	Cold winters; hot, humid summers	High avg CI, Medium variation		
	New York	Cold winters; hot, humid summers	Medium avg CI, Medium variation		
	Texas	Hot summers; mild winters	Medium avg CI, High variation		
	Virginia	Mild climate, seasonal variations	Medium avg CI, Medium variation		
	Washington	Mild, temperate climate; wet winters	Low avg CI, Low variation		

Table 7: Summary of Selected Locations with Typical Weather and Carbon Emissions Characteristics


Average Daily Carbon Intensity in Different Locations

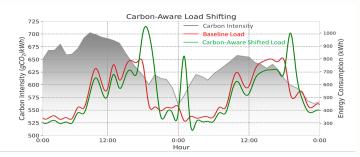
NeurIPS 2024: SustainDC: Benchmarking for Sustainable Data Center Control

Results: Support for various Multi-Agent RL algorithms



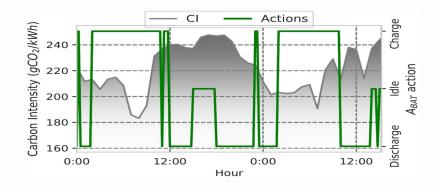
NeurIPS 2024: SustainDC: Benchmarking for Sustainable Data Center Control

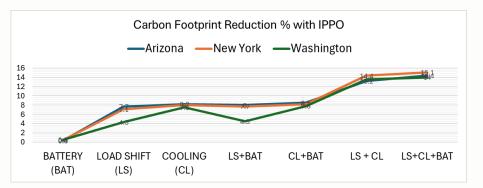
Intuition on Optimization by various controls



HVAC Cooling Optimization over ASHRAE Controller

Investing more in **cooling energy** can significantly **reduce** overall **IT energy consumption**.


Load Shift Optimization


Carbon Intensity Aware Flexible Load Shifting

Flexible load is shifted to times when the grid's CI is lower. It's not perfect because predicting the CI can be challenging.

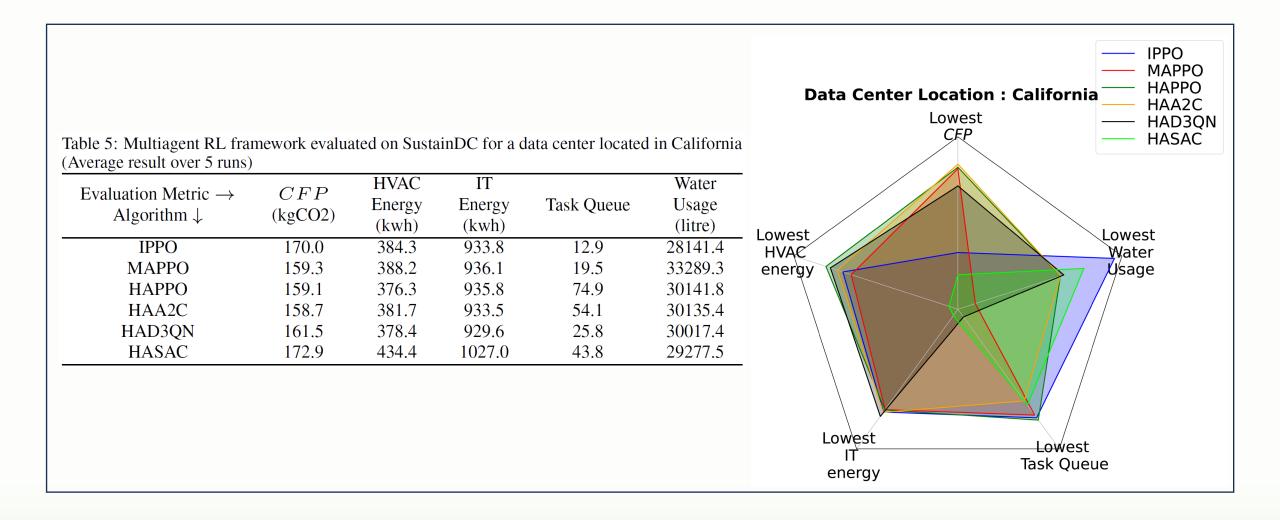
Energy Storage Optimization

The **Battery** agent **stores energy** when the grid's **CI** is **low** and uses it when its **high**.

Cumulative Effect of Multiple Controls

Results: Support for various RL algorithms (Arizona)

IPPO MAPPO HAPPO HAA2C HAD3QN HASAC

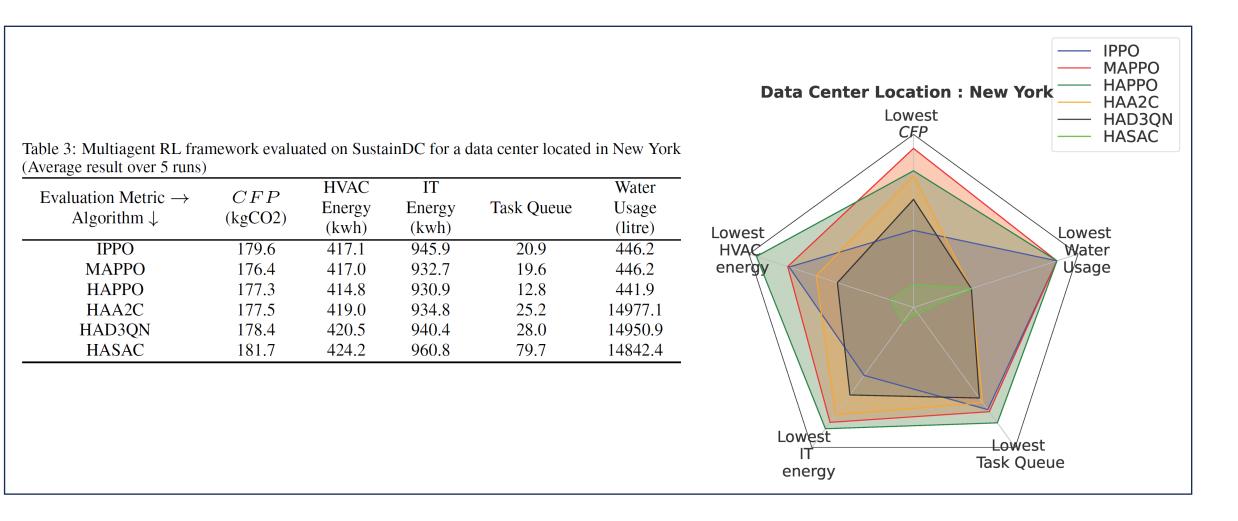

Table 6: Multiagent RL fra	amework evalu	nated on Suc	tainDC for a	data center locat	ed in Arizona	Data Center Location : Arizona	— M/ — H/ — H/ — H/ — H/
Average result over 5 runs) Evaluation Metric \rightarrow Algorithm \downarrow		HVAC Energy (kwh)	IT Energy (kwh)	Task Queue	Water Usage (litre)	Lowest	_owest
IPPO	408.7	380.8	934.8	0.60	30251.6		Water
MAPPO	410.8	383.3	947.5	502.4	31289.6	energy	U/sage
HAPPO	405.5	381.9	936.6	0.26	30983.7		/
HAA2C	407.1	385.0	929.9	7.54	32706.3		
HAD3QN	405.6	386.4	1094.0	0.0051	30377.3		
HASAC	404.6	380.8	936.7	0.54	30878.7		
						Lowest IT energy Lowest Task Queue	2

NeurIPS 2024: SustainDC: Benchmarking for Sustainable Data Center Control

Hewlett Packard Enterprise

12

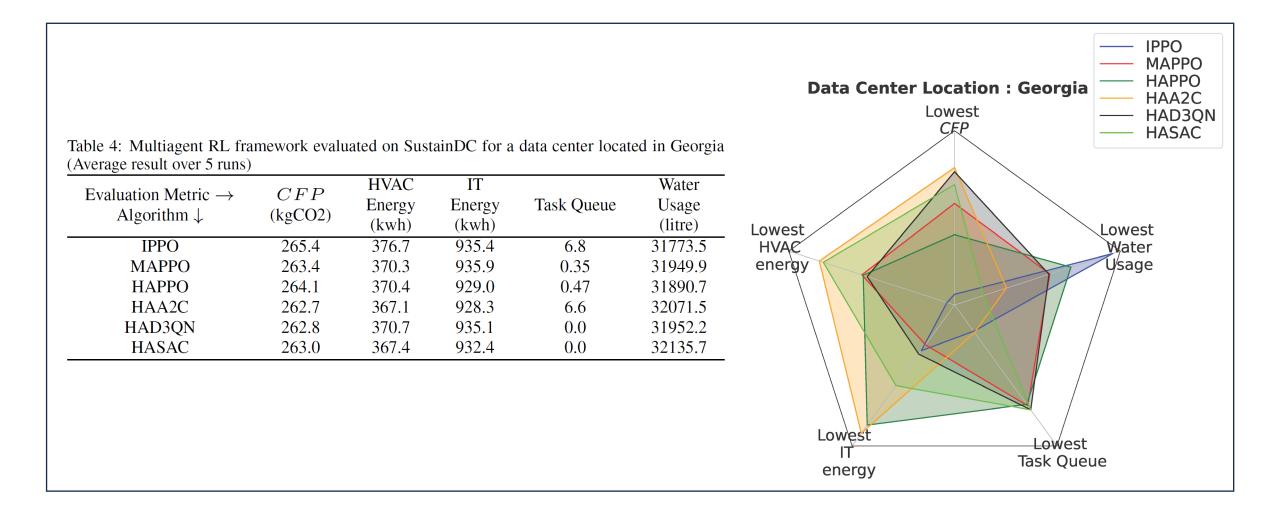
Results: Support for various RL algorithms (California)



NeurIPS 2024: SustainDC: Benchmarking for Sustainable Data Center Control

Hewlett Packard Enterprise

NEURAL INFORMATION PROCESSING SYSTEMS


Results: Support for various RL algorithms (New York)

NeurIPS 2024: SustainDC: Benchmarking for Sustainable Data Center Control

Results: Support for various RL algorithms (Georgia)

NEURAL INFORMATION PROCESSING SYSTEMS

Mixture of RL and Baseline agents Improvements in energy efficiency

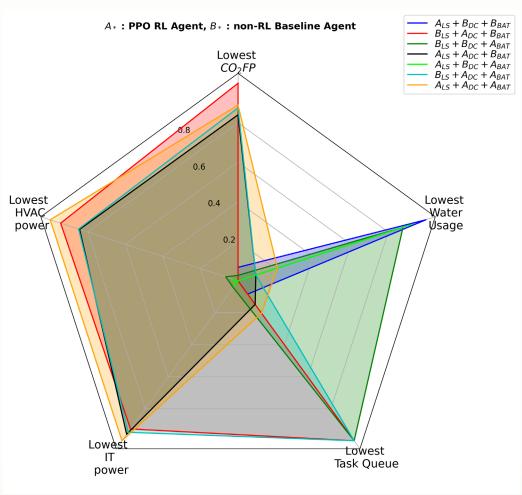

- Carbon footprint reduction
- Lowering of water usage
- Latency of execution

Table 1: Performance with respect to evaluation metrics on single and multiple RL agent baselines.
$A_*: RL agent B_*: non - RL baseline agent$

	iscuric agen	HVAC	IT		Water
Evaluation Metric \rightarrow Algorithm \downarrow	CFP (kgCO2)	Energy (kwh)	Energy (kwh)	Task Queue	Usage (litre)
$1:A_{LS} + B_{DC} + B_{BAT}$	167.61	391.6	1033.8	0.52	10433.46
$2:B_{LS} + A_{DC} + B_{BAT}$	153.56	372.9	944.5	0.0	10930.77
$3:B_{LS}^{-}+B_{DC}^{-}+A_{BAT}^{-}$	168.22	390.3	1029.8	0.0	10493.95
4: $A_{LS} + A_{DC} + B_{BAT}$	155.97	374.9	941.3	0.48	10883.73
$5:A_{LS} + B_{DC} + A_{BAT}$	168.64	391.1	1030.9	0.56	10470.43
$6:B_{LS} + A_{DC} + A_{BAT}$	155.44	374.8	942.5	0	10883.73
$7:A_{LS} + A_{DC} + A_{BAT}$	155.23	371.8	937.4	0.45	10826.61

Results: Benefits of Multi-Agent Control

NeurIPS 2024: SustainDC: Benchmarking for Sustainable Data Center Control

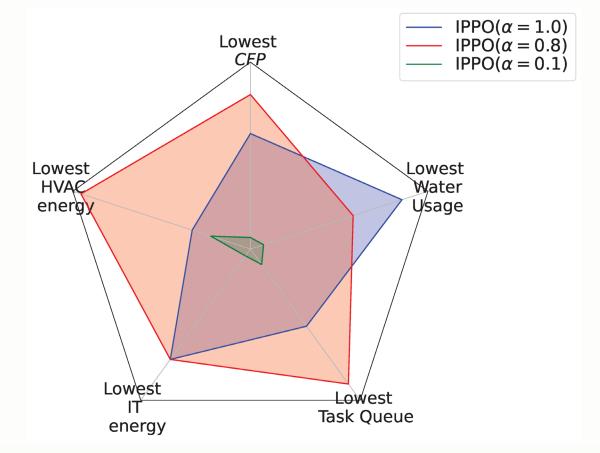
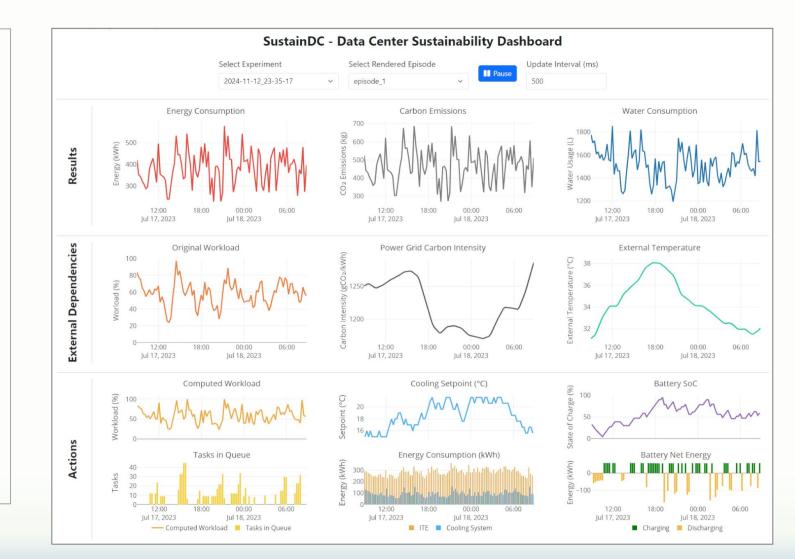

Results: Collaborative multi-agent hyperparameter tuning

Table 2: IPPO evaluated on SustainDC with different values of collaborative reward coefficient α
(Average result over 12 runs)

Evaluation Metric \rightarrow	CFP	HVAC	IT		Water
		Energy	Energy	Task Queue	Usage
Algorithm \downarrow	(kgCO2)	(kwh)	(kwh)		(litre)
$IPPO(\alpha = 1.0)$	176.3	415.2	932.8	12.5	445.6
$IPPO(\alpha = 0.8)$	176.2	414.6	932.8	9.5	445.8
$IPPO(\alpha = 0.1)$	176.4	415.3	932.9	15.7	446.2


 $R_{LS} = \alpha * r_{LS} + (1 - \alpha)/2 * r_{DC} + (1 - \alpha)/2 * r_{BAT}$ $R_{DC} = (1 - \alpha)/2 * r_{LS} + \alpha * r_{DC} + (1 - \alpha)/2 * r_{BAT}$ $R_{BAT} = (1 - \alpha)/2 * r_{LS} + (1 - \alpha)/2 * r_{DC} + \alpha * r_{BAT}$

NeurIPS 2024: SustainDC: Benchmarking for Sustainable Data Center Control

Heterogeneous Multi-objective RL Sustainability Benchmark

This is the first comprehensive Multi-agent Multi-objective **RL Benchmark** for evaluating RL Algorithms for Sustainability with multiple Internal and External Dependencies

NEURAL INFORMATION PROCESSING SYSTEMS

https://github.com/ HewlettPackard/dc-rl

NeurIPS 2024: SustainDC: Benchmarking for Sustainable Data Center Control

Multi-agent Multi-objective RL Sustainability Benchmark

ON THIS PAGE

Demo of SustainDC Features of SustainDC

6

Product ~ Solutions ~ Resource	ces 🗸 Open Source 🗸 Enterprise 🗸 Pricing	
<> Code Issues In Pull requests	⊙ Actions Projects	nts
المعالم المعالي المعالم المعالم المعالم المعالم	Q Go to file	<> Code
antonio-guillenperez working on render	method 🗸 feb013b · 5 days ago	399 Commits
🖿 data	improved battery model, added RBC for battery, i	6 months ago
docs	docs update with colab	5 months ago
envs	working on render method	5 days ago
harl	working on render method	5 days ago
🖿 media	Add files via upload	5 months ago
s phinx	docs update with colab	5 months ago
trained_models/sustaindc	refactor with curr name	5 months ago
utils	bug fix; courtesy: anderson b06501069@ntu.edu	last month
🗋 .gitignore	working on render method	5 days ago
CODE_OF_CONDUCT.md	Add files via upload	5 months ago
	Update LICENSE	5 months ago
README.md	Update README.md	3 months ago
SECURITY.md	Create SECURITY.md	5 months ago
eval_sustaindc.py	refactor with curr name	5 months ago
🗋 evaluate_harl.py	working on render method	5 days ago

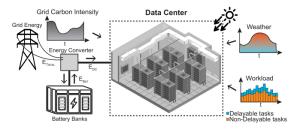
SustainDC 2.2.1 documentation

Q Search

Installation Getting Started Overview Custom Use Evaluation Code

Contribution Guidelines References Index Module Index

SustainDC


SustainDC is a set of Python environments for benchmarking multi-agent reinforcement learning (MARL) algorithms in data centers (DC). It focuses on sustainable DC operations, including workload scheduling, cooling optimization, and auxiliary battery management.

This page contains the documentation for the GitHub repository for the paper "SustainDC: Benchmarking for Sustainable Data Center Control"

Disclaimer: This work builds on our previous research and extends the methodologies and insights gained from our previous work. The original code, referred to as DCRL-Green, can be found in the legacy branch of this repository. The current repository, SustainDC, represents an advanced iteration of DCRL-Green, incorporating enhanced features and improved benchmarking capabilities. This evolution reflects our ongoing commitment to advancing sustainable data center control. Consequently, the repository name remains dc-r1 to maintain continuity with our previous work.

SustainDC uses OpenAI Gym standard and supports modeling and control of three different types of problems:

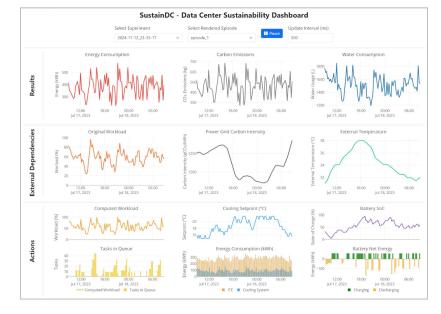
- · Carbon-aware flexible computational load shifting
- Data center HVAC cooling energy optimization
- · Carbon-aware battery auxiliary supply

Demo of SustainDC

A demo of SustainDC is given in the Google Colab notebook below

CO Open in Colat

Features of SustainDC


- Highly Customizable and Scalable Environments: Allows users to define and modify various aspects of DC operations, including server configurations, cooling systems, and workload traces.
- Multi-Agent Support: Enables testing of MARL controllers with both homogeneous and heterogeneous agents, facilitating the study of collaborative and competitive DC management strategies.

NeurIPS 2024: SustainDC: Benchmarking for Sustainable Data Center Control

NeurIPS 2024

Avisek Naug

Antonio Guillen

Thank You

Ricardo Luna

Ashwin R Babu

Cullen Bash

Sahand Ghorbanpour

Soumyendu Sarkar

ML Research @Hewlett Packard Labs

NeurIPS 2024: SustainDC: Benchmarking for Sustainable Data Center Control