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Motivation
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� LLMs have been increasingly applied to deal with complex human instructions in real-world scenarios. 
Evaluating the complex instruction following capability of LLMs is an important problem.

� Previous benchmarks focus on measuring whether the generated text of LLMs can meet every constraint 
in the input instruction. However, they neglect to model the composition of constraints, resulting in:

� Incomprehensive coverage: They are limited to simple composition types such as And, which represents 
coordination between different constraints, failing to cover other composition types of constraints.

� Bias in evaluation: They assign the same weight to different constraints during score aggregation, ignoring 
their dependencies and structures.

� Therefore, we propose ComplexBench, a novel benchmark to comprehensively evaluate the ability of 
LLMs to follow complex instructions.



Motivation
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� An example of instruction with multiple constraints composition



Framework
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� ComplexBench proposes a hierarchical taxonomy to define constraints and their composition type, including 
4 constraint types, 19 constraint dimensions, and 4 composition types.



Data Construction

� The construction pipeline of ComplexBench

� Overall, ComplexBench consists of 1150 meticulously curated instructions, significantly larger than the 
previous instruction-following benchmark

� We categorize ComplexBench based on the included composition types

and their nesting depth within instructions.
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Evaluation Protocol

� Design a yes / no question to verify each constraint and composition type respectively

� RAL: Equip LLM evaluators with rules to answer scoring questions in both rule-defined and open-ended areas

� Model the dependencies of scoring questions based on the composition types
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Experiment: Main Results
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� By evaluating 15 closed-source and open-source popular LLMs on ComplexBench, we highlight the 
weaknesses of LLMs in following complex instructions and point toward potential avenues for future work



Experiment: Main Results
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� The performance of all LLMs declines with an increase in the
complexity of composition types, especially on Selection and Chain

� The performance of most open-source LLMs falls short compared

to closed-source LLMs, especially on complex composition types

� LLMs perform variously under different constraints and composition

types.
� For constraints, those having explicit evaluation standards, such as 

Format and Lexical, prove to be more challenging for LLMs

� For compositions, Chain presents severe challenges while 

Selection comes second



Experiment: Analysis
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� Decomposing complex instructions and executing them through multi-round interactions 
can not improve the performance of LLMs



Experiment: Analysis
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� ComplexBench can provide a complementary perspective for LLM evaluation.



Thanks for your attention!
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