

Junwei Deng^{*1}, Ting-Wei Li^{*1}, Shiyuan Zhang¹, Shixuan Liu², Yijun Pan², Hao Huang¹, Xinhe Wang², Pingbang Hu¹, Xingjian Zhang², Jiaqi W. Ma¹ ¹University of Illinois Urbana-Champaign ²University of Michigan-Ann Arbor

Introduction

Data Attribution

Efficient Data Attribution Methods

Prioritizing efficient data attribution methods applicable to large neural network models, we have implemented most of the state-of-the-art efficient data attribution methods.

Family	Algorithms	LOO		LDS		AUC	
		Linear	Non-linear	Linear	Non-linear	Linear	Non-linear
IF	Explicit [22]	++	-	++	-	++	-
	CG [26]	++	-	++	+	++	+
	LiSSA [1]	++	-	++	+	++	+
	Arnoldi [30]	+		+	-	++	+
TracIn	TracInCP [29]	+	-	+	+	++	+
	Grad-Dot [5]	+	-	+	+	++	+
	Grad-Cos [5]	+	-	+	+	-	-
RPS	RPS-L2 [36]	+	-	+	-	++	+
TRAK	TRAK [27]	++		++	++	++	++

A summary of existing libraries and our library dattri

Motivation

Minimal code invasion

- Many existing implementations of data attribution methods are heavily invasive to the model training pipeline, i.e., the data attribution process is significantly entangled with the model training code, making it challenging for users to adapt the code to other models or applications.
- Low-level utility functions
- Different data attribution methods can share common sub-routines in their algorithms. These sub-routines can be reused by developers to develop new methods

• Comprehensive benchmark suite

 Evaluation metrics, pre-trained model checkpoints and ground truths and reference benchmark results.

JLLINOIS Dattri: A Library for Efficient Data Attribution MUNIVERSITY OF MICHIGAN

dattri is carefully designed to provide a unified API that can be applied to the most common PyTorch model training pipeline with minimal code invasion.

A Demo showing an example of applying IF methods on a PyTorch model.

<u>HIGHLIGHT 2: Modularized low-level utility functions</u>

Different data attribution methods can share common sub-routines in their algorithms. In dattri, we modularize such sub-routines through low-level utility functions so that they can be reused in the development of new methods.

from	dattri.fur

- def f(x, param):
- x = torch.randn(2)param = torch.randn(1)v = torch.randn(5, 2)
- ihvp_result_2 = ihvp_at_x_func(v)

assert torch.allclose(ihvp_result_1, ihvp_result_2)

Example usage of the CG implementation of the IHVP function.

<u>HIGHLIGHT 3: A comprehensive benchmark suite</u>

• The first type of metrics treats the change of model outputs after removing certain data points and retraining the model as a gold standard

Hessian, HVP, and IHVP

• Fisher Information

Matrix (FIM) / IFVP

Random projection

Dropout ensemble

 The second type of metrics evaluates data attribution methods through downstream applications, where the most common ones are noisy label detection and data selection

<pre>taset_test = create_mnist_dataset() rch.utils.data.DataLoader(dataset_trais ch.utils.data.DataLoader(dataset_test)</pre>	n) User prepare
st_lr(train_loader)	
ams, data):	①: target and loss func could be
<pre>ssEntropyLoss()</pre>	 attri is based on torch.func,
<pre>func.functional_call(model, params, x) hat, y)</pre>	replaced as functional_call
nTask(loss_func= loss_func ,	Dattri API
<pre>model=model, checkpoints=model.state_dict())</pre>	
tributorCG(task=task)	
train_loader)	
<pre>r.attribute(train_loader, test_loader)</pre>	

inc.hessian import ihvp_cg, ihvp_at_x_cg return torch.sin(x / param).sum()

```
ihvp_func = ihvp_cg(f, argnums=0, max_iter=2)
ihvp_result_1 = ihvp_func((x, param), v)
ihvp_at_x_func = ihvp_at_x_cg(f, x, param, argnums=0, max_iter=2)
```

<pre>from dattri.model_util.retrain import retrain_lds, retrain_loo</pre>
<pre>def train_mnist_lr(train_loader, **kwargs):</pre>
··· return model
retrain_loo(train_mnist_lr, train_loader,
<pre>> path="./mnist_lr_lds", **kwargs)</pre>
Groundtruth calculation
<pre>from dattri.metric import calculate_lds_ground_truth, calculate_loo_ground_tr</pre>
<pre>gt_loo = calculate_loo_ground_truth(target_func, "./mnist_lr_loo", test_loade gt_lds = calculate_lds_ground_truth(target_func, "./mnist_lr_lds", test_loade</pre>
Evaluate the metrics
from dattri.metric import loo_corr, lds

loo_result = loo_corr(score, gt_loo)

lds_result = lds(score, gt_lds) uc_result = mislabel_detection_auc(score, noise_index)

Example usage of the evaluation metrics and their util functions.

Benchmark Results

Dataset	Model	Task	Sample size (train,test)	Parameter size	Metrics	Data Source
MNIST-10	LR	Image Classification	(5000,500)	7840	LOO/LDS/AUC	[8]
MNIST-10	MLP	Image Classification	(5000,500)	0.11M	LOO/LDS/AUC	[8]
CIFAR-2	ResNet-9	Image Classification	(5000,500)	4.83M	LDS	[24]
CIFAR-10	ResNet-9	Image Classification	(5000,500)	4.83M	AUC	[24]
MAESTRO	Music Transformer	Music Generation	(5000,178)	13.3M	LDS	[12]
Shakespeare	NanoGPT	Text Generation	(3921,435)	10.7M	LDS	[20]

- IF performs well on Linear model
- TRAK performs generally well on both LR and MLP
- LOO is not a good evaluation metric when the model gets non-linear.
- Most algorithms do well on AUC noisy label detection to MNIST-10.
- Only TRAK could get non-trvial result on complex models

(a) ResNet-9 on CIFAR-2

Installation & Github

pip install dattri

- benchmark scripts in Github Repos examples to come
- More than 10 examples and More methods / benchmark settings /
- Any feedbacks from users are important!

Table 3: The full experimental setting for data attribution benchmark.

(b) MLP on MNIST-10. MusicTransformer on MAESTRO (LDS) XXXX X X

Explicit CG LiSSA Arnoldi ad-Dot ad-Cos ad-Cos RPS-L2 RPS-L2 RAK-10 RAK-10 RAK-50 (b) Music Transformer on MAESTRO.

• dattri has been released on PyPl

(c) LOO correlation of MLP on MNIST

RAK-AK-1

MLP on MNIST-10 (AUC)

(d) LDS of MLP on MNIST-10.

(c) ResNet-9 on CIFAR-10.

(c) NanoGPT on Shakespeare.

