

Paper

Project Website Code

InfiBench: Evaluating the Question-Answering Capabilities of Code LLMs

Linyi Li, Shijie Geng, Zhenwen Li, Yibo He, Hao Yu, Ziyue Hua, Guanghan Ning, Siwei Wang, Tao Xie, Hongxia Yang

Simon Fraser University Rutgers University Peking University The Hong Kong Polytechnic University ByteDance Inc

SFU

Benchmarks for Code LLMs

• Code LLMs:

- Trained on code-domain data
- Strong at coding, reasoning, UI interaction, ...
- Various code benchmarks evaluate code LLMs

```
swe-benchverified

repobench

codexglue

humanevalpack

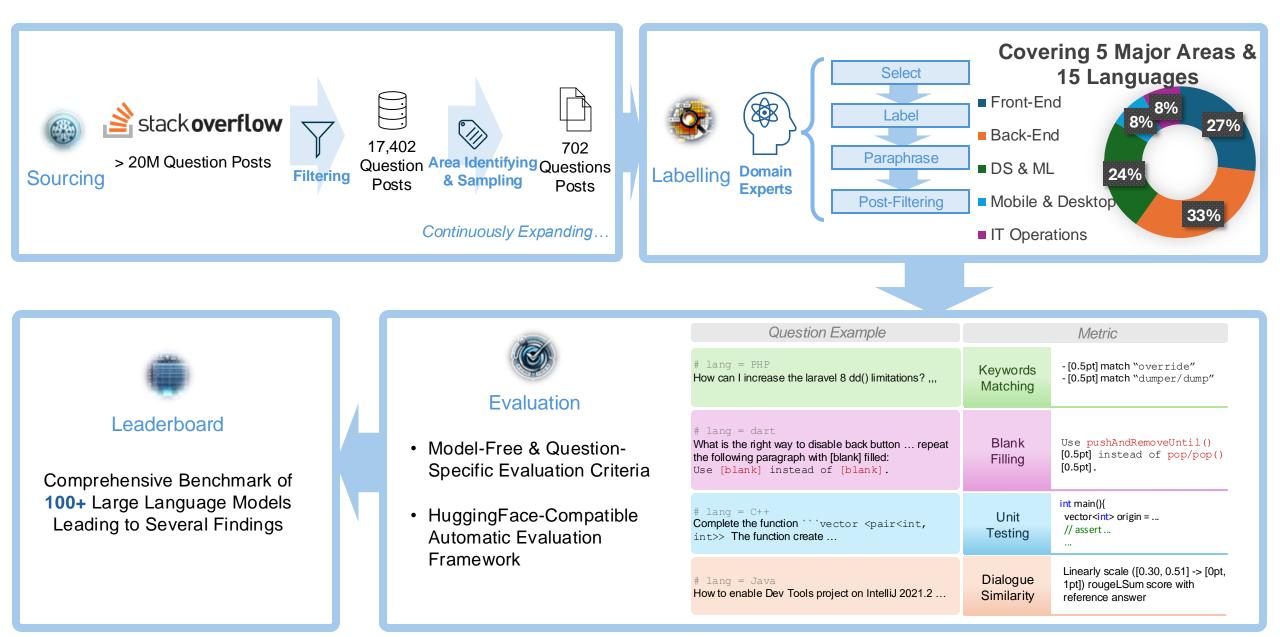
ds

humaneval-x lbpp

arenahard

swe-bench
```


Limitations & Design Goals

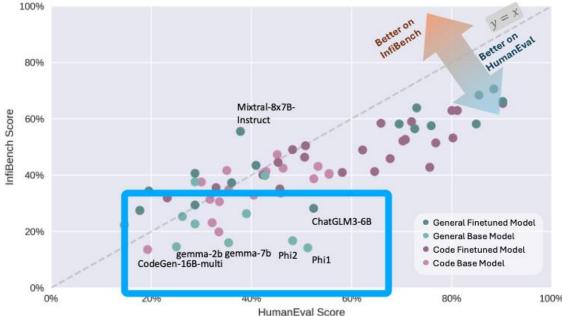

Limitations:

- Only focus on code generation
- Most are derived datasets
 - Few from independent data source
- Benchmarks are saturating
- May be contaminated

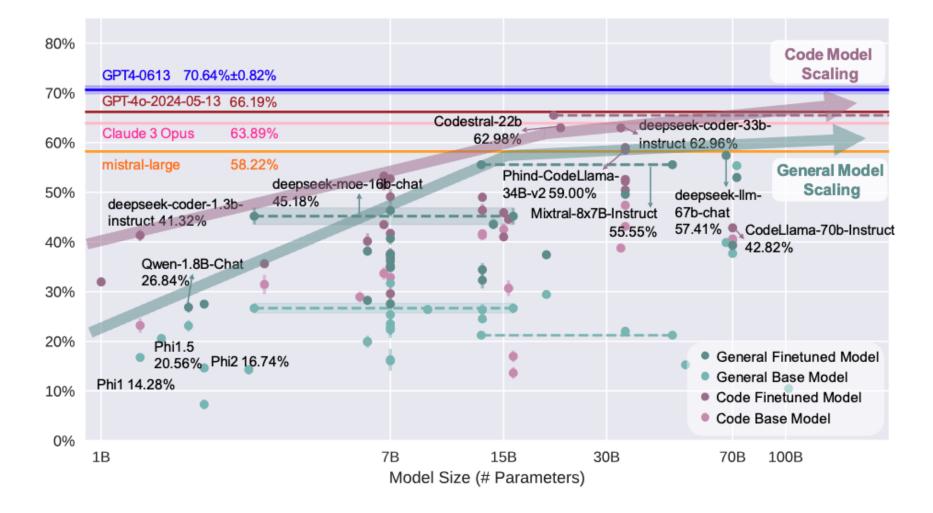
Design Goals:

- Code-related Question-Answering
- Independent data source
- Non-saturating

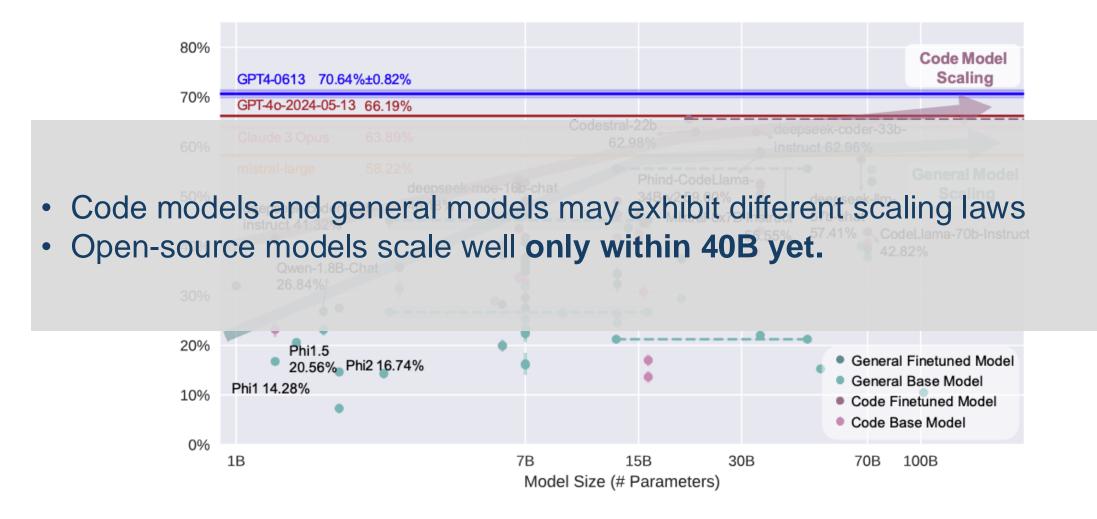
Key Takeaways


- GPT-4 far from perfect, open-source models close but not exceed GPT-4 yet
- Among models of same sizes, their performances vary
- Hard problems generalize
- Instruction finetuning is important

Ge	eneral Base,	General Finetuned,	Code Ba	ase, Code Finetuned
	Family	Best Model Name	Size	InfiBench Score
1	GPT-4	GPT-4-0613	?	$70.64\% \pm 0.82$
2	DeepSeek Coder	deepSeek-coder-V2-instruct	236B / 21B	65.49%
3	Claude 3	Claude 3 Opus	?	63.89%
4	Mistral Open	Codestral-22b	22B	$62.98\% \pm 0.56\%$
5	Phind	Phind-CodeLlama-34B-v2	34B	59.00%
6	Mistral	mistral-large	?	58.22%
7	DeepSeek LLM	deepseek-llm-67b-chat	67B	57.41%
8	GPT-3.5	GPT-3.5-turbo-0613	?	$56.47\% \pm 1.34\%$
9	Qwen	Qwen-72B	72B	55.34%
10	Magicoder	Magicoder-S-CL-7B	7B	$52.71\% \pm 0.72\%$
11	WizardLM	WizardCoder-Python-34B-V1.0	34B	52.59%
12	Code Llama	CodeLlama-34b-Instruct	34B	50.45%
13	01.AI	Yi-34B-Chat	34B	49.58%
14	Zephyr	Zephyr 7B beta	7B	$46.31\% \pm 1.11\%$
15	StarCoder2	15B-Instruct	15B	$45.89\% \pm 0.95\%$
16	DeepSeek MoE	deepseek-moe-16b-chat	16B / 2.8B	$45.18\% \pm 1.65\%$
17	OctoPack	OctoCoder	15.5B	$44.55\% \pm 0.79\%$
18	gemma	gemma-7b-it	7B	$40.68\% \pm 1.23\%$
19	Llama 2	Llama2-70B-Chat	70B	39.30%
20	InternLM	InternLM-Chat-20B	20B	$37.41\% \pm 0.75\%$
21	Baichuan2	Baichuan2-13B-Chat	13B	$34.40\% \pm 1.34\%$
22	StarCoder	StarCode+	15.5B	$30.67\% \pm 1.57\%$
23	CodeGen2.5	CodeGen2.5-7B-Instruct	7B	$29.57\% \pm 1.53\%$
24	ChatGLM	ChatGLM3-6B	6B	$28.23\% \pm 0.58\%$
25	davinci	davinci-002	?	$21.25\% \pm 1.17\%$
26	Phi	Phi1.5	1.5B	$20.56\% \pm 0.09\%$
27	CodeGeeX	CodeGeeX2-6B	6B	$19.88\% \pm 0.36\%$
28	CodeGen2	CodeGen2-16B	16B	$16.97\% \pm 1.15\%$
29	IEITYuan	Yuan2-51B-hf	51B	15.25%
30	CodeGen	CodeGen-16B-multi	16B	$13.62\% \pm 1.18\%$
		10 Highest-Voted Answer Posts		65.18%
	Human	Highest-Voted Answer Post		56.28%
		Officially-Accepted Answer Post		52.90%


Key Takeaways

- GPT-4 far from perfect, open-source models close but not exceed GPT-4 yet
- Among models of same sizes, their performances vary
- Hard problems generalize
- Instruction finetuning is important
- Some models overly focus on code generation, ignoring other capabilities



Empirical Scaling Laws

Empirical Scaling Laws

