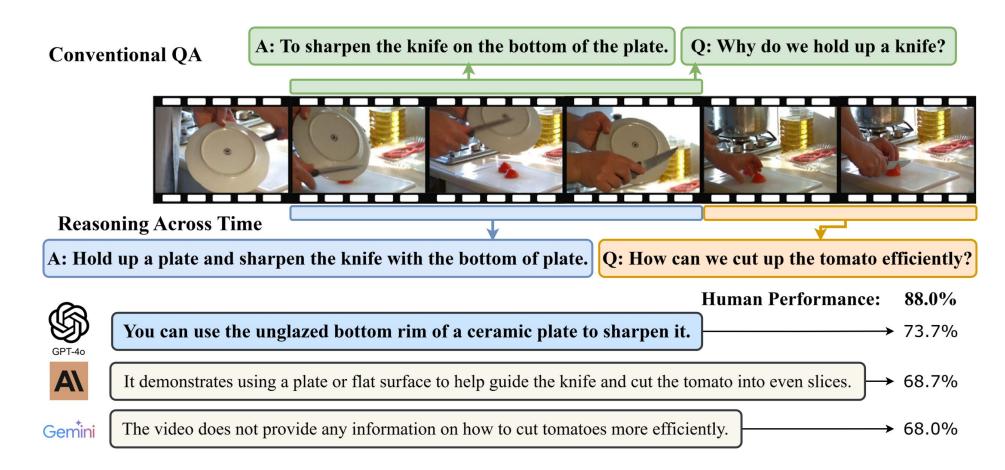


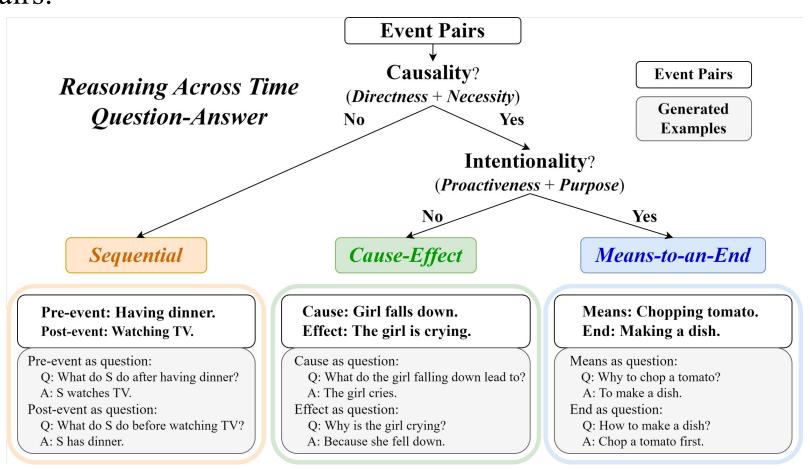
ReXTime: A Benchmark Suite for Reasoning-Across-Time in Videos

Jr-Jen Chen, Yu-Chien Liao, Hsi-Che Lin, Yu-Chu Yu, Yen-Chun Chen, Yu-Chiang Frank Wang National Taiwan University, Microsoft

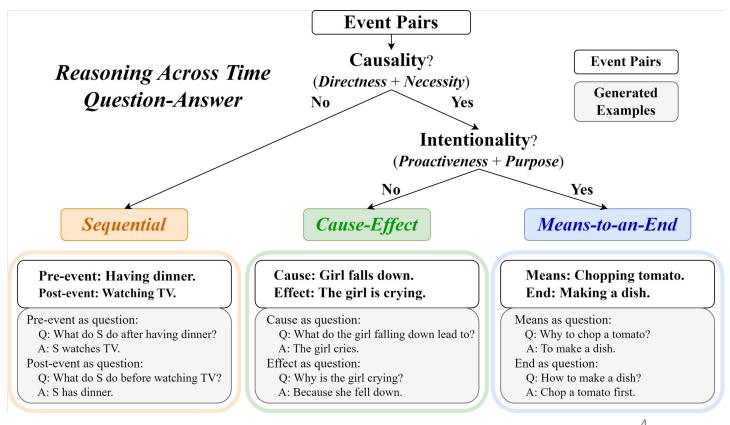


Introduction

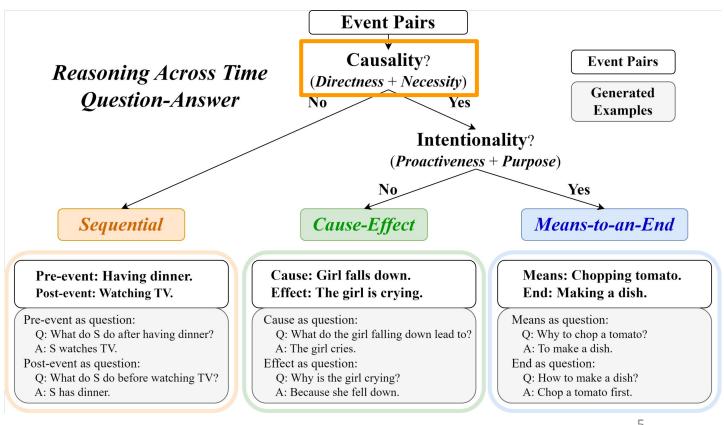
- QA with Reasoning-Across-Time
 - Question and answer each belongs to different time spans.


ReXTime Benchmark

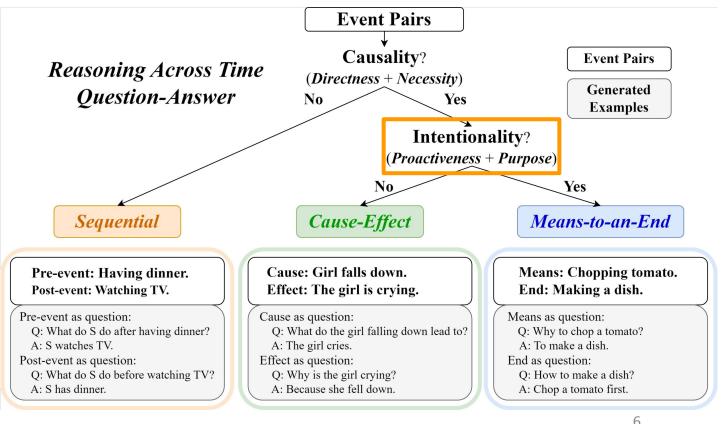
Reasoning Across Time


A: Hold up a plate and sharpen the knife with the bottom of plate. Q: How can we cut up the tomato efficiently?

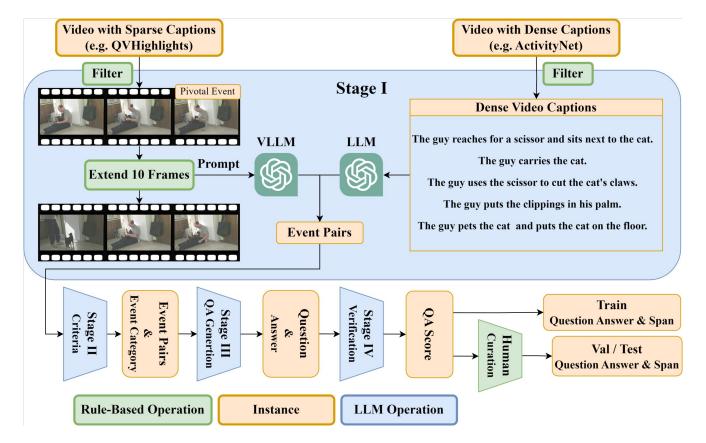
- Grounding-VQA data pairs:
 - Sequential
 - Cause-Effect
 - Means-to-an-End
- ReXTime tasks:
 - Multi-choice VQA
 - Moment localization


Grounding-VQA Classification Criteria

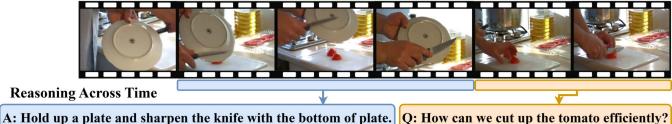
- **Directness**: This criterion assesses the directness of the causal link between events
- *Necessity*: This criterion measures whether the second event is inevitable due to the first.
- **Proactiveness**: This evaluates whether an event is carried out with deliberate intention.
- **Purpose**: This evaluates whether the intention has been fulfilled.


Grounding-VQA Classification Criteria

- **Directness**: This criterion assesses the directness of the causal link between events
- *Necessity*: This criterion measures whether the second event is inevitable due to the first.


Grounding-VQA Classification Criteria

- **Proactiveness**: This evaluates whether an event is carried out with deliberate intention.
- **Purpose**: This evaluates whether the intention has been fulfilled.



Performances on ReXTime

- Dataset sources:
 - ☐ ActivityNet [1], QVHighlights [2]
- Machine generated / verified
- Human verified validation / test set
- Reduce about 55% of overall cost

ReXTime Evaluation

- QA-IoU
 - **Question**-Answer Intersection over Union
- Lower QA-IoU indicates:
 - Less overlapping between the question span and the answer span.
 - ☐ More challenging for temporal reasoning.

Datasets	# of Reasoning Across Time Samples			C.L. (s) ↑	QA-mIoU (%) ↓
	Train	Val	Test	0.2. (6)	Δ. τ 33 (/3) ψ
Ego4D-NLQ	2,212 [†]	775 [†]	705 [†]	5.2	85.5
NExTGQA	_	1,403 [†]	2,301 [†]	11.7	66.1
ReX Time (Ours)	9,695	921	2,143	66.0	15.5

Table: Frontier Models' Performances

Results of Frontier Models on ReXTime

- Moment localization
 - \square mIoU, R@1 (IoU=0.3), R@1 (IoU=0.5)
- VQA / Grounding VQA
 - ☐ Accuracy
 - \square Acc@IoU>0.5
- Human evaluation
 - □ 3 testers per question

Models -	Moment Localization			VQA	
	mIoU	R@1 (IoU= 0.3)	R@1 (IoU= 0.5)	Accuracy(%)	Accuracy(%) @oU ≥ 0.5
Human	61.11	74.30	62.85	87.98	58.51
GPT-4o	36.28	45.33	34.00	73.67	28.67
Claude3-Opus	23.61	30.67	17.67	68.67	13.67
Gemini-1.5-Pro	28.43	35.67	25.00	68.00	18.33
GPT-4V	26.74	33.33	22.00	63.33	16.67
Reka-Core	27.95	36.33	24.00	59.67	17.00

Table: Frontier MLLMs' Performances on ReXTime

Results of the Fine-tuned Performance

- Fine-tuned on ReXTime generated training data
- Performance boost after fine-tuned with our generated training data


Models	Moment Localization			VQA	
	mIoU	R@1 (IoU=0.3)	R@1 (IoU=0.5)	Accuracy(%)	Accuracy(%) @ IoU ≥ 0.5
UniVTG (Zero-shot) UniVTG (Finetuned) CG-DETR (Zero-shot) CG-DETR (Finetuned)	28.17	41.34	26.88	_	_
	34.63 (+6.46)	53.48 (+12.14)	34.53 (+7.65)	_	_
	23.87	31.31	16.67	_	_
	26.53 (+2.66)	39.71 (+8.40)	22.73 (+6.06)	_	_
VTimeLLM (Zero-shot) VTimeLLM (Finetuned) TimeChat (Zero-shot) TimeChat (Finetuned)	20.14	28.84	17.41	36.16	-
	29.92 (+9.78)	43.69 (+14.85)	26.13 (+8.72)	57.58 (+21.42)	17.13
	11.65	14.42	7.61	40.04	-
	26.29 (+14.64)	40.13 (+25.71)	21.42 (+13.81)	49.46 (+9.42)	10.92

Conclusion

- Reasoning across time remains a challenge for current MLLMs.
- ReXTime is the first benchmark for reasoning-across-time with 2143 test samples
- ReXTime generated data is effective in enhancing reasoning across time.

• Thank you for your listening!

References

- [1] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet: A large-scale video benchmark for human activity understanding. In CVPR, 2015. 1, 4
- [2] Jie Lei, Tamara L Berg, and Mohit Bansal. Detecting moments and highlights in videos via natural language queries. In NeurIPS, 2021. 1, 3, 4, 6
- [3] Kevin Qinghong Lin, Pengchuan Zhang, Joya Chen, Shraman Pramanick, Difei Gao, Alex Jinpeng Wang, Rui Yan, and Mike Zheng Shou. Univtg: Towards unified video-language temporal grounding. In ICCV, 2023. 3, 7, 8
- [4] WonJun Moon, Sangeek Hyun, SuBeen Lee, and Jae-Pil Heo. Correlation-guided query-dependency calibration in video representation learning for temporal grounding. arXiv preprint arXiv:2311.08835, 2023. 3, 7, 8
- [5] Bin Huang, Xin Wang, Hong Chen, Zihan Song, and Wenwu Zhu. Vtimellm: Empower llm to grasp video moments. In CVPR, 2024. 3, 7, 8
- [6] Shuhuai Ren, Linli Yao, Shicheng Li, Xu Sun, and Lu Hou. Timechat: A time-sensitive multimodal large language model for long video understanding. In CVPR, 2024. 3, 7, 8
- [7] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in 3,000 hours of egocentric video. In CVPR, 2022. 3, 8, 9

References

- [8] Junbin Xiao, Angela Yao, Yicong Li, and Tat Seng Chua. Can i trust your answer? visually grounded video question answering. In CVPR, 2024. 3, 6, 8, 9
- [9] The claude 3 model family: Opus, sonnet, haiku. Technical report, Anthropic, 2024. 1, 6, 7
- [10] Gpt-4 system card. Technical report, OpenAI, 2024. 1, 6, 7
- [11] Reka core, flash, and edge: A series of powerful multimodal language models. Technical report, Reka, 2024. 6, 7
- [12] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. 1, 3, 6, 7
- [13] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multi-modal models. arXiv preprint arXiv:2312.11805, 2023. 1, 3, 6, 7