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Federated Learning (FL) enables participant devices (i.e., clients) to optimize 
their local models while a central server aggregates these local models into a 
global model.
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Federated Learning (FL) enables participant devices (i.e., clients) to optimize 
their local models while a central server aggregates these local models into a 
global model.

ü Lower communication costs

ü Better user privacy
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✗ System heterogeneity: 
Participant clients generally exhibit 
diverse and constrained system 
capabilities. 

Motivation
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✗ System heterogeneity: 
Participant clients generally exhibit 
diverse and constrained system 
capabilities. 

✗ Domain shifts: 
Owing to the distributed nature of 
FL, the data distributions among 
participant clients vary significantly.

Motivation
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Overview

Overview of DapperFL with two clients for each communication round.
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Overview of DapperFL with two clients for each communication round.
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Pruning with MFP
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Pruning with MFP

Eq.1:

Eq.2:
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Updating with DAR
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Updating with DAR

Regularization term:
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Updating with DAR

Regularization term:

Cross-entropy loss:
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Updating with DAR

Regularization term:

Cross-entropy loss:

Local objective:
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Model Aggregation
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Model Aggregation

Model recovery:



22

Model Aggregation

Model recovery:

Aggregation:
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Accuracy across Domains
Comparison of model accuracy on Digits:

Comparison of model accuracy on Office Caltech:
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Accuracy across Domains
Comparison of model accuracy on Digits:

Comparison of model accuracy on Office Caltech:
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Ablation Study
Effect of pruning ratio ρ:
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Ablation Study
Effect of pruning ratio ρ: Comparison of model 

accuracy with different ρ:
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Ablation Study
Effect of pruning ratio ρ:

Effect of hyper-parameters in the MFP and DAR:

Comparison of model 
accuracy with different ρ:
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Conclusion

l We proposed the MFP module, which utilizes local and global knowledge to 
prune models, and we also proposed to aggregate pruned local models via 
a heterogeneous model aggregation algorithm.

l We proposed the DAR module, which improves the overall performance of 
DapperFL by implicitly encouraging pruned local models to learn robust 
local representations using specialized regularization techniques.

l The evaluation results show that DapperFL outperforms runner-up by up to 
2.28% in terms of accuracy on two domain generalization benchmarks, 
while achieving adaptive model volume reduction ranging from 20% to 80%.
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