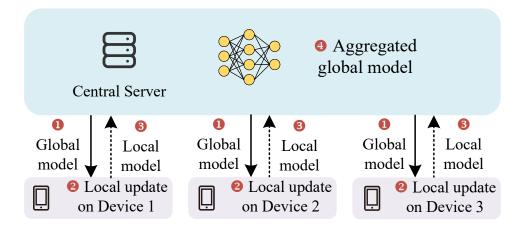
DapperFL: Domain Adaptive Federated Learning with Model Fusion Pruning for Edge Devices

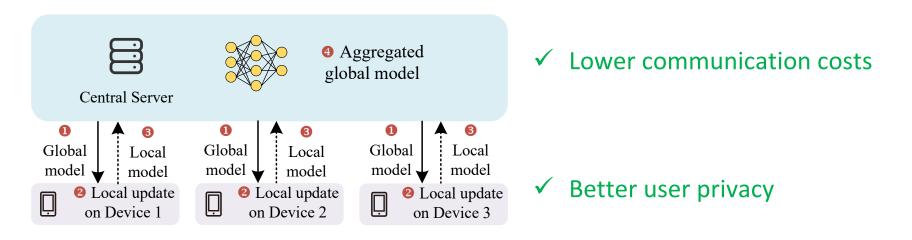
Yongzhe Jia, Xuyun Zhang, Hongsheng Hu, Kim-Kwang Raymond Choo, Lianyong Qi, Xiaolong Xu*, Amin Beheshti, Wanchun Dou

NeurIPS 2024

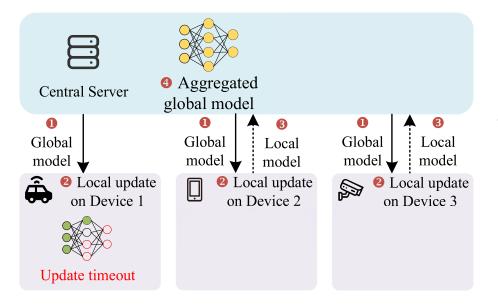
Federated Learning (FL) enables participant devices (i.e., clients) to optimize their local models while a central server aggregates these local models into a global model.



Federated Learning (FL) enables participant devices (i.e., clients) to optimize their local models while a central server aggregates these local models into a global model.



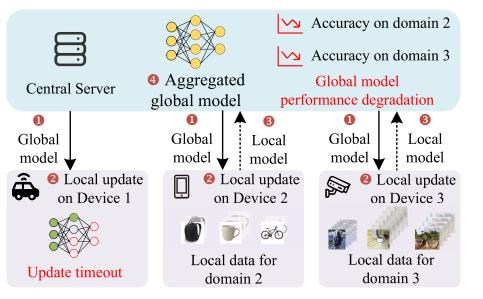
Motivation



X System heterogeneity:

Participant clients generally exhibit diverse and constrained system capabilities.

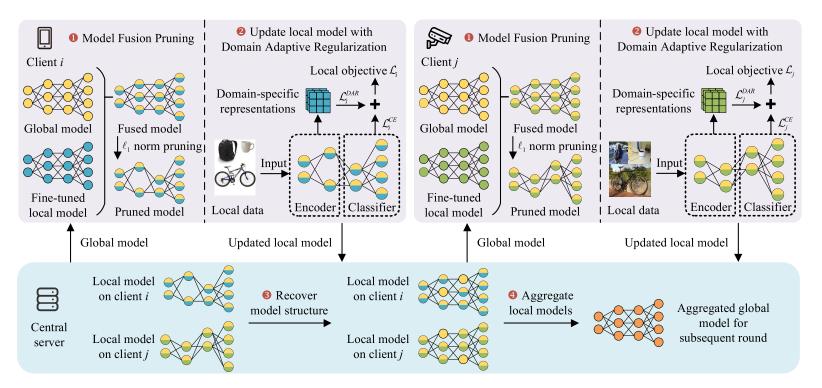
Motivation

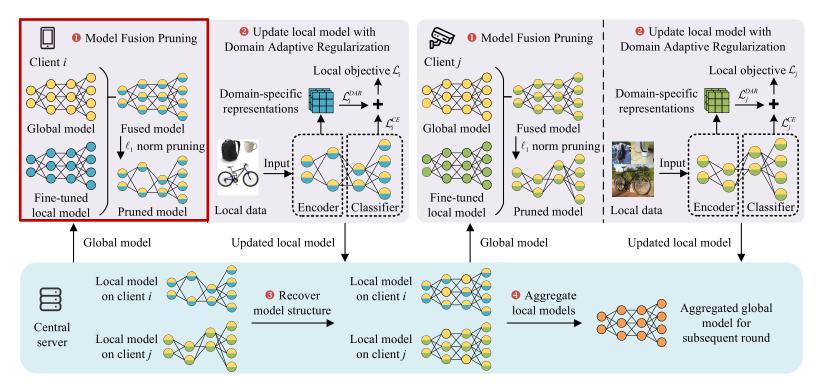


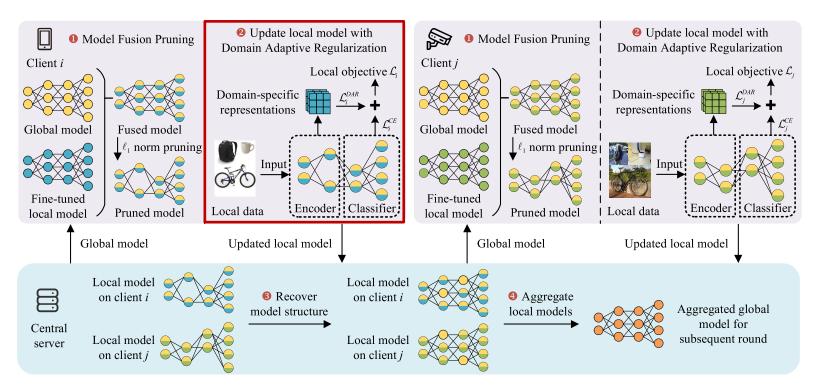
X System heterogeneity: Participant clients generally exhibit diverse and constrained system capabilities.

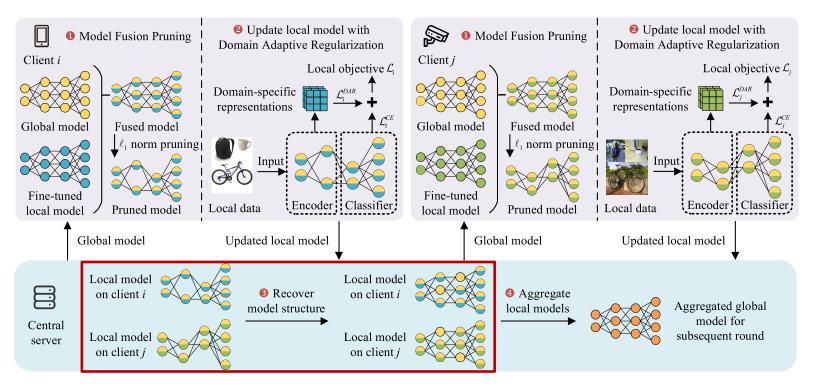
X **Domain shifts:**

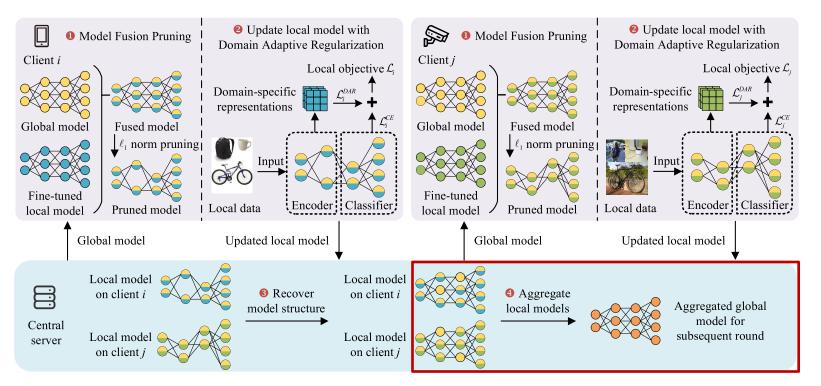
Owing to the distributed nature of FL, the data distributions among participant clients vary significantly.

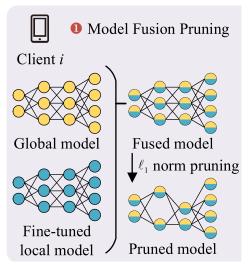




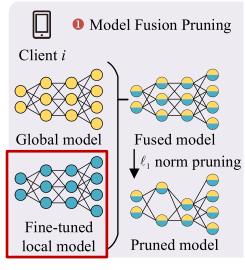




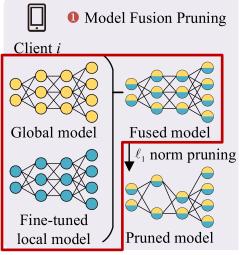




Algorithm 1 Model Fusion Pruning of DapperFL
Input: Global model \mathcal{W}^{t-1} , local data \mathcal{D}_i , pruning ratio ρ_i
Output: Pruned local model $\boldsymbol{w}_i^t \odot \boldsymbol{M}_i^t$
1: $\hat{\boldsymbol{w}}_i^t \leftarrow$ Fine-tune global model \mathcal{W}^{t-1} on local data \mathcal{D}_i
2: $w_i^t \leftarrow$ Fuse the global model \mathcal{W}^{t-1} into the local model \hat{w}_i^t using Eq. 1 and Eq. 2
3: $M_i^t \leftarrow$ Calculate binary mask matrix by ℓ_1 norm with pruning ratio ρ_i
4: $\boldsymbol{w}_i^t \odot \boldsymbol{M}_i^t \leftarrow$ Prune the local model \boldsymbol{w}_i^t with binary mask matrix \boldsymbol{M}_i^t
5: return Pruned local model $\boldsymbol{w}_i^t \odot \boldsymbol{M}_i^t$



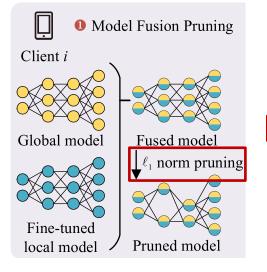
Input: G	n 1 Model Fusion Pruning of DapperFL lobal model \mathcal{W}^{t-1} , local data \mathcal{D}_i , pruning ratio ρ_i
Output:	Pruned local model $w_i^t \odot M_i^t$
1: $\hat{\boldsymbol{w}}_{i}^{t} \leftarrow$	- Fine-tune global model \mathcal{W}^{t-1} on local data \mathcal{D}_i
2: $\boldsymbol{w}_{i}^{t} \leftarrow$	- Fuse the global model \mathcal{W}^{t-1} into the local model \hat{w}_i^t using Eq. 1 and Eq. 2
3: $\dot{M}_{i}^{t} \leftarrow$	- Calculate binary mask matrix by ℓ_1 norm with pruning ratio ρ_i
4: $\boldsymbol{w}_i^t \odot$	$\boldsymbol{M}_{i}^{t} \leftarrow$ Prune the local model \boldsymbol{w}_{i}^{t} with binary mask matrix \boldsymbol{M}_{i}^{t}
5: retur	n Pruned local model $\boldsymbol{w}_i^t \odot \boldsymbol{M}_i^t$



Algorithm 1 Model Fusion Pruning of DapperFL	
Input: Global model \mathcal{W}^{t-1} , local data \mathcal{D}_i , pruning ratio ρ_i	
Output: Pruned local model $w_i^t \odot M_i^t$	
1: $\hat{\boldsymbol{w}}_{i}^{t} \leftarrow \text{Fine-tune global model } \mathcal{W}^{t-1}$ on local data \mathcal{D}_{i}	
2: $\boldsymbol{w}_i^t \leftarrow$ Fuse the global model \mathcal{W}^{t-1} into the local model $\hat{\boldsymbol{w}}_i^t$ using Eq. 1 and Eq.	2
3: $M_i^t \leftarrow \text{Calculate binary mask matrix by } \ell_1 \text{ norm with pruning ratio } \rho_i$	_
4: $\boldsymbol{w}_{i}^{t} \odot \boldsymbol{M}_{i}^{t} \leftarrow$ Prune the local model \boldsymbol{w}_{i}^{t} with binary mask matrix \boldsymbol{M}_{i}^{t}	
5: return Pruned local model $\boldsymbol{w}_i^t \odot \boldsymbol{M}_i^t$	

Eq.1:
$$\boldsymbol{w}_i^t = \alpha^t \mathcal{W}^{t-1} + (1 - \alpha^t) \hat{\boldsymbol{w}}_i^t$$

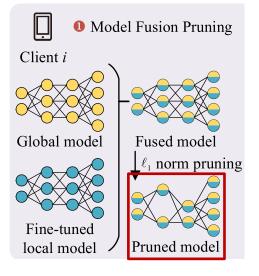
Eq.2: $\alpha^t = \max\{(1 - \epsilon)^{t-1} \alpha_0, \alpha_{min}\}$



Algorithm 1 Model Fusion Pruning of DapperFL
Input: Global model \mathcal{W}^{t-1} , local data \mathcal{D}_i , pruning ratio ρ_i
Output: Pruned local model $\boldsymbol{w}_i^t \odot \boldsymbol{M}_i^t$
1: $\hat{m{w}}_i^t \leftarrow$ Fine-tune global model \mathcal{W}^{t-1} on local data \mathcal{D}_i
2: $w_i^t \leftarrow$ Fuse the global model \mathcal{W}^{t-1} into the local model \hat{w}_i^t using Eq. 1 and Eq. 2
3: $M_i^t \leftarrow \text{Calculate binary mask matrix by } \ell_1 \text{ norm with pruning ratio } \rho_i$
4: $\boldsymbol{w}_i^t \odot \boldsymbol{M}_i^t \leftarrow$ Prune the local model \boldsymbol{w}_i^t with binary mask matrix \boldsymbol{M}_i^t
5: return Pruned local model $\boldsymbol{w}_i^t \odot \boldsymbol{M}_i^t$

Eq.1:
$$\boldsymbol{w}_{i}^{t} = \alpha^{t} \mathcal{W}^{t-1} + (1 - \alpha^{t}) \hat{\boldsymbol{w}}_{i}^{t}$$

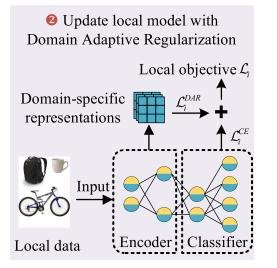
Eq.2: $\alpha^{t} = \max\{(1 - \epsilon)^{t-1} \alpha_{0}, \alpha_{min}\}$

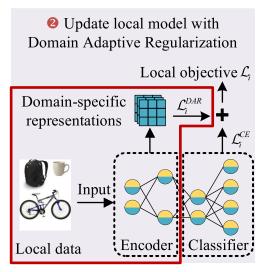


Algorithm 1 Model Fusion Pruning of DapperFL Input: Global model \mathcal{W}^{t-1} , local data \mathcal{D}_i , pruning ratio ρ_i Output: Pruned local model $w_i^t \odot M_i^t$ 1: $\hat{w}_i^t \leftarrow$ Fine-tune global model \mathcal{W}^{t-1} on local data \mathcal{D}_i 2: $w_i^t \leftarrow$ Fuse the global model \mathcal{W}^{t-1} into the local model \hat{w}_i^t using Eq. 1 and Eq. 2 3: $M_i^t \leftarrow$ Calculate binary mask matrix by ℓ_1 norm with pruning ratio ρ_i 4: $w_i^t \odot M_i^t \leftarrow$ Prune the local model w_i^t with binary mask matrix M_i^t 5: return Pruned local model $w_i^t \odot M_i^t$

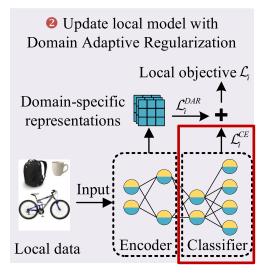
Eq.1:
$$\boldsymbol{w}_i^t = \alpha^t \mathcal{W}^{t-1} + (1 - \alpha^t) \hat{\boldsymbol{w}}_i^t$$

Eq.2: $\alpha^{t} = \max\{(1-\epsilon)^{t-1}\alpha_{0}, \alpha_{min}\}$





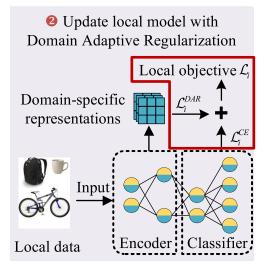
Regularization term: $\mathcal{L}_i^{DAR} = ||g_e(\boldsymbol{w}_e \odot \boldsymbol{M}_e; x_i)||_2^2$



Regularization term: $\mathcal{L}_i^{DAR} = ||g_e(\boldsymbol{w}_e \odot \boldsymbol{M}_e; x_i)||_2^2$

Cross-entropy loss:

$$\mathcal{L}_i^{CE} = -rac{1}{|\mathcal{K}_i|}\sum_{k\in\mathcal{K}_i}y_{i,k}\log(\hat{y}_{i,k})$$



Regularization term: $\mathcal{L}_i^{DAR} = ||g_e(\boldsymbol{w}_e \odot \boldsymbol{M}_e; x_i)||_2^2$

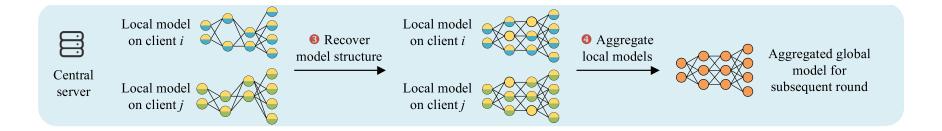
Cross-entropy loss:

$$\mathcal{L}_i^{CE} = -\frac{1}{|\mathcal{K}_i|} \sum_{k \in \mathcal{K}_i} y_{i,k} \log(\hat{y}_{i,k})$$

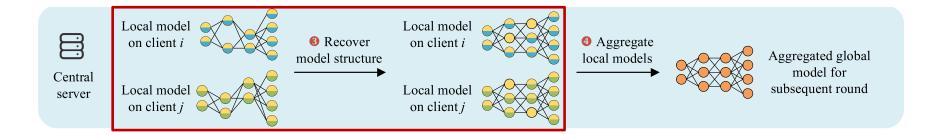
Local objective:

$$\mathcal{L}_i = \mathcal{L}_i^{CE} + \gamma \mathcal{L}_i^{DAR}$$

Model Aggregation

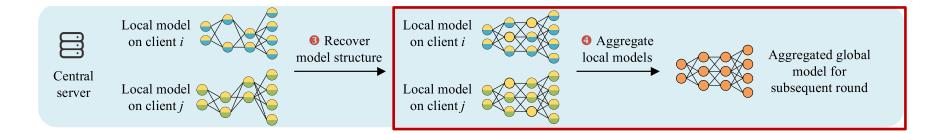


Model Aggregation



Model recovery:
$$\boldsymbol{w}_i^t \coloneqq \underbrace{\boldsymbol{w}_i^t \odot \boldsymbol{M}_i^t}_{\text{local knowledge}} + \underbrace{\mathcal{W}^{t-1} \odot \overline{\boldsymbol{M}}_i^t}_{\text{global knowledge}}$$

Model Aggregation



Model recovery:
$$\boldsymbol{w}_i^t \coloneqq \underbrace{\boldsymbol{w}_i^t \odot \boldsymbol{M}_i^t}_{\text{local knowledge}} + \underbrace{\mathcal{W}^{t-1} \odot \overline{\boldsymbol{M}}_i^t}_{\text{global knowledge}}$$

Aggregation:
$$\mathcal{W}^t = \sum_{i \in \mathcal{C}} \frac{|\mathcal{D}_i|}{|\mathcal{D}|} \boldsymbol{w}_i^t$$

Accuracy across Domains

Comparison of model accuracy on Digits:

FL frameworks	System Heter.	MNIST	USPS	SVHN	SYN	Global accuracy
FedAvg [3]	X	95.89(1.47)	86.84(0.80)	78.39(3.24)	33.63(2.87)	71.81(0.46)
MOON [16]	X	93.03(1.97)	78.38(5.81)	84.45(7.55)	25.97(3.28)	69.44(0.53)
FedSR [14]	X	96.77(0.73)	86.15(2.38)	81.48(1.77)	31.64(0.40)	73.89(0.57)
FPL [15]	X	95.54(1.78)	87.69(0.98)	83.74(4.26)	34.73(1.53)	74.17(0.95)
FedDrop [10]	1	89.48(2.56)	82.51(1.17)	72.98(0.83)	29.35(1.97)	66.85(0.93)
FedProx [17]	1	96.68(0.96)	83.96(0.73)	76.69(3.50)	30.95(1.42)	70.74(0.52)
FedMP [11]	1	94.16(3.32)	85.30(2.66)	81.37(1.92)	35.12(2.00)	72.29(0.89)
NeFL 12	1	84.98(1.07)	88.49(4.17)	78.41(2.33)	36.02(5.72)	67.64(0.30)
DapperFL (ours)	1	96.25(2.10)	86.30(1.24)	82.45(1.72)	37.26(2.71)	74.30(0.26)

Comparison of model accuracy on Office Caltech:

FL frameworks	System Heter.	Caltech	Amazon	Webcam	DSLR	Global accuracy
FedAvg [3]	X	66.07(2.46)	76.84(3.18)	65.52(4.98)	56.67(1.98)	64.54(1.10)
MOON [16]	X	65.62(3.74)	75.79(1.69)	72.41(2.63)	53.33(1.93)	61.86(0.79)
FedSR [14]	X	62.95(2.25)	78.95(3.29)	75.86(3.59)	50.00(3.34)	65.47(1.13)
FPL [15]	×	63.84(3.17)	82.63(4.11)	65.52(2.63)	60.00(3.85)	65.45(1.15)
FedDrop [10]	1	66.07(0.89)	79.47(2.30)	56.90(3.98)	53.33(6.94)	60.58(1.42)
FedProx [17]	1	61.61(4.09)	71.05(4.98)	68.97(4.98)	46.67(1.93)	62.08(1.11)
FedMP [11]	1	65.62(2.49)	75.79(2.43)	56.90(3.59)	66.67(3.34)	62.34(0.93)
NeFL 12	1	54.91(1.57)	71.05(1.61)	77.59(4.56)	66.67(3.85)	62.26(1.34)
DapperFL (ours)	1	64.73(1.03)	81.58(3.29)	74.14(1.99)	66.67(3.85)	67.75(0.97)

Accuracy across Domains

Comparison of model accuracy on Digits:

FL frameworks	System Heter.	MNIST	USPS	SVHN	SYN	Global accuracy
FedAvg [3]	X	95.89(1.47)	86.84(0.80)	78.39(3.24)	33.63(2.87)	71.81(0.46)
MOON [16]	X	93.03(1.97)	78.38(5.81)	84.45(7.55)	25.97(3.28)	69.44(0.53)
FedSR [14]	X	96.77(0.73)	86.15(2.38)	81.48(1.77)	31.64(0.40)	73.89(0.57)
FPL [15]	×	95.54(1.78)	87.69(0.98)	83.74(4.26)	34.73(1.53)	74.17(0.95)
FedDrop [10]		89.48(2.56)	82.51(1.17)	72.98(0.83)	29.35(1.97)	66.85(0.93)
FedProx [17]	1	96.68(0.96)	83.96(0.73)	76.69(3.50)	30.95(1.42)	70.74(0.52)
FedMP [11]	1	94.16(3.32)	85.30(2.66)	81.37(1.92)	35.12(2.00)	72.29(0.89)
NeFL 12	1	84.98(1.07)	88.49(4.17)	78.41(2.33)	36.02(5.72)	67.64(0.30)
DapperFL (ours)	1	96.25(2.10)	86.30(1.24)	82.45(1.72)	37.26(2.71)	74.30(0.26)

Comparison of model accuracy on Office Caltech:

FL frameworks	System Heter.	Caltech	Amazon	Webcam	DSLR	Global accuracy
FedAvg [3]	X	66.07(2.46)	76.84(3.18)	65.52(4.98)	56.67(1.98)	64.54(1.10)
MOON [16]	X	65.62(3.74)	75.79(1.69)	72.41(2.63)	53.33(1.93)	61.86(0.79)
FedSR [14]	X	62.95(2.25)	78.95(3.29)	75.86(3.59)	50.00(3.34)	65.47(1.13)
FPL [15]	×	63.84(3.17)	82.63(4.11)	65.52(2.63)	60.00(3.85)	65.45(1.15)
FedDrop [10]	1	66.07(0.89)	79.47(2.30)	56.90(3.98)	53.33(6.94)	60.58(1.42)
FedProx [17]	1	61.61(4.09)	71.05(4.98)	68.97(4.98)	46.67(1.93)	62.08(1.11)
FedMP [11]	1	65.62(2.49)	75.79(2.43)	56.90(3.59)	66.67(3.34)	62.34(0.93)
NeFL [12]		54.91(1.57)	71.05(1.61)	77.59(4.56)	66.67(3.85)	62.26(1.34)
DapperFL (ours)	1	64.73(1.03)	81.58(3.29)	74.14(1.99)	66.67(3.85)	67.75(0.97)

Ablation Study

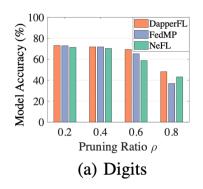
Effect of pruning ratio ρ :

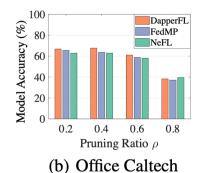
Pruning ratio ρ	#Para	FLOPs	MNIST	USPS	SVHN	SYN	Global accuracy
0.2	3.92M	203.34M	94.86%	83.36%	85.55%	32.84%	73.06%
0.4	2.94M	152.50M	89.42%	80.77%	84.13%	35.57%	71.76%
0.6	1.96M	101.67M	91.79%	82.16%	77.59%	29.65%	69.27%
0.8	0.98M	50.83M	63.38%	66.17%	58.38%	21.64%	48.14%
Pruning ratio $ ho$	#Para	FLOPs	Caltech	Amazon	Webcam	DSLR	Global accuracy
0.2	8.94M	366.13M	68.30%	80.53%	63.79%	60.00%	66.80%
0.4	6.70M	274.60M	70.09%	79.47%	67.24%	56.67%	67.71%
0.6	4.47M	183.06M	58.48%	80.00%	67.24%	50.00%	61.02%
0.8	2.23M	91.53M	43.75%	53.16%	31.03%	33.33%	38.28%

Effect of pruning ratio *ρ*:

Pruning ratio ρ	#Para	FLOPs	MNIST	USPS	SVHN	SYN	Global accuracy
0.2	3.92M	203.34M	94.86%	83.36%	85.55%	32.84%	73.06%
0.4	2.94M	152.50M	89.42%	80.77%	84.13%	35.57%	71.76%
0.6	1.96M	101.67M	91.79%	82.16%	77.59%	29.65%	69.27%
0.8	0.98M	50.83M	63.38%	66.17%	58.38%	21.64%	48.14%
Pruning ratio ρ	#Para	FLOPs	Caltech	Amazon	Webcam	DSLR	Global accuracy
0.2	8.94M	366.13M	68.30%	80.53%	63.79%	60.00%	66.80%
0.4	6.70M	274.60M	70.09%	79.47%	67.24%	56.67%	67.71%
0.6	4.47M	183.06M	58.48%	80.00%	67.24%	50.00%	61.02%
0.8	2.23M	91.53M	43.75%	53.16%	31.03%	33.33%	38.28%

Comparison of model accuracy with different ρ :

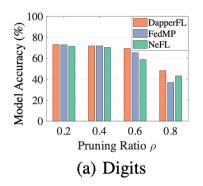




Effect of pruning ratio *ρ*:

Pruning ratio ρ	#Para	FLOPs	MNIST	USPS	SVHN	SYN	Global accuracy
0.2	3.92M	203.34M	94.86%	83.36%	85.55%	32.84%	73.06%
0.4	2.94M	152.50M	89.42%	80.77%	84.13%	35.57%	71.76%
0.6	1.96M	101.67M	91.79%	82.16%	77.59%	29.65%	69.27%
0.8	0.98M	50.83M	63.38%	66.17%	58.38%	21.64%	48.14%
Pruning ratio ρ	#Para	FLOPs	Caltech	Amazon	Webcam	DSLR	Global accuracy
0.2	8.94M	366.13M	68.30%	80.53%	63.79%	60.00%	66.80%
0.4	6.70M	274.60M	70.09%	79.47%	67.24%	56.67%	67.71%
0.6	4.47M	183.06M	58.48%	80.00%	67.24%	50.00%	61.02%
0.8	2.23M	91.53M	43.75%	53.16%	31.03%	33.33%	38.28%

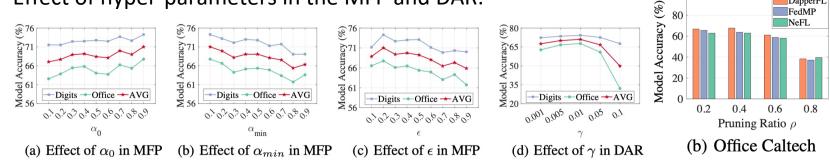
Comparison of model accuracy with different ρ :



DapperFL

100

Effect of hyper-parameters in the MFP and DAR:



- We proposed the MFP module, which utilizes local and global knowledge to prune models, and we also proposed to aggregate pruned local models via a heterogeneous model aggregation algorithm.
- We proposed the DAR module, which improves the overall performance of DapperFL by implicitly encouraging pruned local models to learn robust local representations using specialized regularization techniques.
- The evaluation results show that DapperFL outperforms runner-up by up to 2.28% in terms of accuracy on two domain generalization benchmarks, while achieving adaptive model volume reduction ranging from 20% to 80%.

Thank you for your attention !