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1. An alternative to schedules that doesn’t need to know the 
stopping time T in advance (supports anytime stopping) 

2. Obtains the theoretically optimal rate of convergence for 
Lipschitz convex problems 

3. Works in practice: matches or outperforms cosine schedules! 

Proof: AlgoPerf Challenge self-tuning track winner

Schedule-Free Learning



Figure 4: Deep Learning Experiments

at the default value of 0.9 for all problems except NanoGPT, where the loss started to increase rapidly
when 0.9 was used. The larger � = 0.98 value in our sweep was stable.

4.2 MLCommons Algorithmic Efficiency benchmark

The AlgoPerf challenge (Dahl et al., 2023) is designed to be a large-scale and comprehensive bench-
mark for deep learning optimization algorithms, covering major data domains and architectures. It
includes Transformers, ConvNets and U-Net models across image, language, graph and speech do-
mains, and contains 8 problems total. We evaluated Schedule-Free AdamW following the competition
guidelines, comparing against NAdamW, the competition reference Algorithm, running 10 seeds of
each. As this is a time-to-target competition, traditional error bars are not appropriate so we instead
plot all 10 seeds separately. Note that we excluded one benchmark problem, ResNet-50 training, as
neither AdamW nor NAdamW can hit the target accuracy on that task. The remaining tasks are:

WMT A Encoder-Decoder Transformer Model on the WMT17 German-to-english translation task
(Bojar et al., 2017).

VIT A S/16 Vision Transformer (Dehghani et al., 2023) model on the ILSVRC 2012 ImageNet
classification task (Russakovsky et al., 2015).

FASTMRI The reference U-Net architecture from the fastMRI challenge Knee MRI dataset (Zbontar
et al., 2018).

CONFORMER A Conformer (Gulati et al., 2020) Speech Recognition model on the LibriSpeech
ASR dataset (Panayotov et al., 2015).
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Faster early convergence! 

Smooth loss curves!



1989 - 1998 2012

“we adjusted manually 
throughout training. The 
heuristic which we followed 
was to divide the learning rate 
by 10 when the validation error 
rate stopped improving with 
the current learning rate”

2017



THEORY-PRAC TICE MISMATCH #1

We never use SGD in the precise form as we analyze! 

In practice we return the last iterate, whereas we analyze the 
average iterate.

 

 

xt+1 = xt − γtgt

x̄T =
1
T

T

∑
t=1

xt



SGD with averaging gives exactly worst-case optimal rates for 
several complexity classes, notably the convex + Lipschitz 
setting. 

Without averaging you get a log(T) worse rate 



But what do experiments suggest?

Folk-law: Averaging is bad and unnecessary, it’s an artifact of 
the analysis not reflective of real world problems.

Folk-law: The  schedule is bad, use one of the 
empirically better schedules we found via trial and error. 

A flat schedule is even worse!

γt = D/G t



A Perspective on Scheduling

 

 

xt+1 = xt − γtgt

x̄T =
1
T

T

∑
t=1

xt

The schedules used by experimentalists 

are not replacing this   part! D/G T

They are actually replacing averaging. 

High-Performance schedules arise naturally from  

theory by analyzing the last iterate  rather than  xT x̄T



T

1

Theoretically Optimal Schedules 
(for convex problems) γt =

D

G T
⋅ (1 −

t
T )

f(x̄T) − f* ≤
DG

T

Linear Decay Schedule

Linear Decay Schedules give 
exactly worst-case optimal 
convergence rates without 
averaging!



Linear Decay works extremely well in practice (when combined with warmup) … 

Almost always better than cosine. 

Cosine largely wastes the last 5% of the run by using too small a learning rate

Stop using cosine! It is complete nonsense



Linear Decay emulates Averaging

T

1  x̄T =
1
T

T

∑
t=1

xt

Gradient from t=1 appears in all terms in 
the average: weight 1

Gradient from t=T/2 appears in half the 
terms in the in the average: weight 1/2

Gradient from t=3T/4 appears in 1/4 of the 
terms in the in the average: weight 1/4

…. same weighting as for linear decay



 If linear decay emulates averaging … and works so well …  
  ….. why doesn’t averaging work? 

THEORY-PRAC TICE MISMATCH #2



Averaging needs 
momentum (done right)



Schedule-Free Learning Paradigm

yt = (1 − β)zt + βxt

zt+1 = zt − γ∇f(yt)

xt+1 = (1 −
1

t + 1 ) xt +
1

t + 1
zt+1

 xt =
1
t

t

∑
i=1

zi

Running Average 

Equivalent to: 

Interpolation beta=0.9 

(A kind of momentum) 



Even for convex problems, 
Schedule-Free outperforms classical averaging and linear decay 
schedules!



Schedule-Free does momentum in a different, 
more gradual way….

yt = (1 − β)zt + βxt

zt+1 = zt − γ∇f(yt)

xt+1 = (1 −
1

t + 1 ) xt +
1

t + 1
zt+1

 results in the current gradient evaluation point 

y containing 0.1 of the most recent gradient  

Classical momentum does the same thing! 0.1 of the 
most recent gradient is included in the step

β = 0.9
gt−1

mt+1 = βmt + (1 − β)∇f(xt)
xt+1 = xt − αtmt+1

But classical momentum incorporates the rest of the 
gradient over the next ~10 steps, whereas Schedule-
Free incorporates it much slower, of the reminder of 
optimization



For general convex Lipschitz functions 

Schedule-Free gives exactly optimal worst-case rates for ANY 
beta, whereas classical momentum for any fixed beta gives 
worse rates.

Figure 2: Schedule-Free learning converges faster than classical averaging approaches, often out-
performing tuned schedules.

where ct+1 = 1/(t+1) and z1 = x1 is the initial point. Note that with this weighting, the x sequence
is just an online equal-weighted average of the z sequence. This method has a momentum parameter
� that interpolates between Polyak-Ruppert averaging (� = 0) and Primal averaging (� = 1). Primal

averaging (Nesterov and Shikhman, 2015; Tao et al., 2018; Cutkosky, 2019; Kavis et al., 2019;
Sebbouh et al., 2021; Defazio and Gower, 2021; Defazio and Jelassi, 2022), is an approach where the
gradient is evaluated at the averaged point x, instead of z:

zt+1 = zt � �rf(xt, ⇣t)

xt+1 = (1� ct+1)xt + ct+1zt+1,

this approach maintains the worst-case optimality of PR averaging but is generally considered to
converge too slowly to be practical (Figure 2). The advantage of our interpolation is that we get the
best of both worlds. We can achieve the fast convergence of Polyak-Ruppert averaging (since the
z sequence moves much quicker than the x sequence), while still keeping some coupling between
the returned sequence x and the gradient-evaluation locations y, which increases stability (Figure 2).
Values of � similar to standard momentum values � ⇡ 0.9 appear to work well in practice. We will
use the notation ↵ = 1� � when convenient.

In this formulation, � = 0.9 gives the practical advantages of momentum, dampening the immediate
impact of large gradients, resulting in more stable training. To see this, notice that the immediate
effect of the gradient gt at step t is to introduce (1� �)gt = 0.1gt into the iterate sequence y. This
is similar to exponential-moving-average (EMA) momentum, where also (1 � �)gt is added into
the iterate sequence on step t. However, here the remainder of gt is very slowly added into y over
time, via its place in the average x, whereas with an EMA with � = 0.9, the majority of the gradient
is incorporated within the next 10 steps. So from this viewpoint, the Schedule-Free updates can
be seen as a version of momentum that has the same immediate effect, but with a greater delay
for adding in the remainder of the gradient. This form of momentum (by interpolation) also has a
striking advantage: it does not result in any theoretical slowdown; it gives the optimal worst case
(Nesterov, 2013) convergence for the non-smooth convex setting (including constants), for any choice
of momentum � between 0 and 1 inclusive:

Theorem 1. Suppose F is a convex function, and ⇣1, . . . , ⇣T is an i.i.d. sequence of random variables

such that F = E[f(x, ⇣)] for some function f that is G-Lipschitz in x. For any minimizer x?, define

D = kx1 � x?k and � = D/(G
p
T ). Then for any � 2 [0, 1], Schedule-Free SGD ensures:

E[F (xT )� F (x?)] 
DG
p
T

In contrast, exponential-moving-average momentum in the non-smooth setting actually hurts the
theoretical worst-case convergence rate. The Schedule-Free approach maintains the advantages of
momentum (Sutskever et al., 2013) without the potential worst-case slow-down.
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Figure 1: Schedule-Free methods (black) closely track the Pareto frontier of loss v.s. training time in
a single run. Both Schedule-Free SGD (left) and AdamW (right) match or exceed the performance of
cosine learning rate schedules of varying lengths (red).

alone, without the use of averaging. This result suggests that schedules have, in some sense, the same
role to play as PR averaging in optimization. However, schedules have a critical disadvantage: they
require setting the optimization stopping time T in advance.

Motivated by the theory-practice gap for Polyak-Ruppert averaging, we ask the following question:

Do there exist iterate averaging approaches that match the empirical performance
of learning rate schedules, without sacrificing theoretical guarantees?

By developing a new link between averaging and learning rate sequences, we introduce a new
approach to averaging that maintains the worst-case convergence rate theory of PR averaging, while
matching and often exceeding the performance of schedule-based approaches – firmly answering this
question in the affirmative.

1.1 Summary of Results
• Our approach does not require the stopping time T to be known or set in advance. It closely

tracks the Pareto frontier of loss versus training time during a single training run (Figure 1),
while requiring no additional hyper-parameters over the base SGD or Adam optimizer.

• Our approach uses an alternative form of momentum. This form has appealing theoretical
properties: it is worst case optimal for any choice of the momentum parameter in the
convex Lipschitz setting, a property that does not hold for traditional momentum.

• Our key theoretical result is a new online-to-batch conversion theorem, which establishes
the optimality of our method while also unifying several existing online-to-batch theorems.

• We perform, to our knowledge, one of the largest and most comprehensive machine
learning optimization algorithm evaluations to date, consisting of 28 problems, ranging
from logistic regression to large-scale deep learning problems. Schedule-Free methods show
strong performance, matching or out-performing heavily-tuned cosine schedules.

1.2 Notation

Consider the stochastic convex minimization minx2Rd f(x) = E⇣ [f(x, ⇣)], where each f(x, ⇣) is
Lipschitz and convex in x, and the expectation is taken over the random variable ⇣. With a slight
abuse of notation, we assume we are given, at time step t and any point y that we choose, an arbitrary
sub-gradient rf(y, ⇣t) from the sub-differential of f .

2 Method

We propose the following method, which we call Schedule-Free SGD:

yt = (1� �)zt + �xt,

zt+1 = zt � �rf(yt, ⇣t),

xt+1 = (1� ct+1)xt + ct+1zt+1,

2

Varying cosine-schedule length shows how Schedule-Free closely tracks 
the Pareto frontier of Loss v.s. training time.

Schedule-Free SGD Schedule-Free AdamW



Figure 7: Schedule-Free Adam compared to target-setting baseline on the Algoperf competition
self-tuning track.
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Schedule-Free AdamW also won the 
MLCommons AlgoPerf 2024 
Algorithmic Efficiency Challenge Self 
Tuning Track!

Schedule-Free runs have much smoother loss 
curves and faster convergence



Thank you!


