

Aaron Defazio Research Scientist FAIR

Xingyu (Alice) Yang Harsh Mehta Konstantin Mishchenko Ahmed Khaled Ashok Cutkosky

downloads 351k downloads/month 118k

github.com/facebookresearch/schedule_free/tree/main

6	adefazio Improved numerical stability of wrapper		5afd85a · last month	() 69
	examples/mnist	Tweaks		6 mc
	schedulefree	Improved numerical stability of wrapper		la
Ľ) CODE_OF_CONDUCT.md	Initial commit		6 mc
Ľ) CONTRIBUTING.md	Initial commit		6 mc
Ľ) LICENSE	Initial commit		6 mc
Ľ] README.md	Improved numerical stability of wrapper		la
Ľ) pyproject.toml	Initial commit		6 mc
Ľ) requirements.txt	cleanup		3 mc
Ľ) setup.cfg	Updated		6 mc
Ľ) setup.py	cleanup		3 mc
Ţ] README 🛯 Code of conduct 🏻 🐴 Apache-	2.0 license 🐴 Security		

Schedule-Free Learning

Schedule-Free Optimizers in PyTorch.

Preprint: The Road Less Scheduled

Authors: Aaron Defazio, Xingyu (Alice) Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky

TLDR Faster training without schedules - no need to specify the stopping time/steps in advance!

```
pip install schedulefree
```

Primary implementations are SGDScheduleFree and AdamWScheduleFree . We also have a AdamWScheduleFreeReference version which has a simplified implementation, but which uses more memory. To combine with other optimizers, use the ScheduleFreeWrapper version.

A Jax implementation is available as part of Optax.

Schedule-Free Learning

- An alternative to schedules that doesn't need to know the 1. stopping time T in advance (supports anytime stopping)
- 2. Obtains the theoretically optimal rate of convergence for Lipschitz convex problems
- Works in practice: matches or outperforms cosine schedules! 3.

Proof: AlgoPerf Challenge self-tuning track winner

 $O_{\mathbf{u}} = V_{\mathbf{u}} = V_{\mathbf{u}} = (D \mathbf{I} D \mathbf{I})$

Handwritten Digit Recognition with a Back-Propagation Network

> Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel AT&T Bell Laboratories, Holmdel, N. J. 07733

Gradient-Based Learning Applied to Document Recognition

YANN LECUN, MEMBER, IEEE, IÉON BOTTOU, YOSHUA BENGIO, AND PATRICK HAFFNER

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca

"we adjusted manually throughout training. The heuristic which we followed was to divide the learning rate

by 10 when the validation error

rate stopped improving with

the current learning rate"

ImageNet Classification with Deep Convolutional **Neural Networks**

Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca Published as a conference paper at ICLR 2017

SGDR: STOCHASTIC GRADIENT DESCENT WITH WARM RESTARTS

Ilya Loshchilov & Frank Hutter

University of Freiburg Freiburg, Germany, {ilya,fh}@cs.uni-freiburg.de

THEORY-PRACTICE MISMATCH #1

We never use SGD in the precise form as we analyze!

In practice we return the last iterate, whereas we analyze the average iterate.

> $x_{t+1} = x_t - \gamma_t g_t$ $\bar{x}_T = \frac{1}{T} \sum_{T}^{T} x_t$ L

SGD with averaging gives exactly worst-case optimal rates for several complexity classes, notably the convex + Lipschitz setting.

Without averaging you get a log(T) worse rate

But what do experiments suggest?

Folk-law: Averaging is bad and unnecessary, it's an artifact of the analysis not reflective of real world problems.

Folk-law: The $\gamma_t = D/G\sqrt{t}$ schedule is bad, use one of the empirically better schedules we found via trial and error. A **flat schedule is even worse**!

A Perspective on Scheduling

The schedules used by experimentalists are not replacing this $D/G\sqrt{T}$ part!

- They are actually replacing averaging.
- High-Performance schedules arise naturally from
 - **theory** by analyzing the last iterate x_T rather than \bar{x}_T

Linear Decay Schedule

 $\gamma_t = \frac{D}{G\sqrt{T}} \cdot \left(1 - \frac{t}{T}\right)$

Linear Decay Schedules give exactly worst-case optimal convergence rates without

 $f(\bar{x}_T) - f_* \le \frac{DG}{\sqrt{T}}$

EXACT CONVERGENCE RATE OF THE LAST ITERATE **IN SUBGRADIENT METHODS**

MOSLEM ZAMANI* AND FRANÇOIS GLINEUR [†]

When, Why and How Much? Adaptive Learning Rate Scheduling by Refinement

Aaron Defazio	ADEFAZIO@MET
FAIR, Meta	
Ashok Cutkosky	ASHOK@CUTKOSK
Boston University	
Harsh Mehta	HARSHM@GOOGL
Google Research	
Konstantin Mishchenko	KONSTA.MISH@GMAI
Samsung AI Center	

Linear Decay works extremely well in practice (when combined with warmup) ... Almost always better than cosine.

Cosine largely wastes the last 5% of the run by using too small a learning rate Cosine & Linear

Stop using cosine! It is complete nonsense

Linear Decay emulates Averaging

Gradient from t=3T/4 appears in 1/4 of the terms in the in the average: **weight 1/4**

$$\bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t$$

Gradient from t=1 appears in all terms in the average: **weight 1**

Gradient from t=T/2 appears in half the terms in the in the average: **weight 1/2**

.... same weighting as for linear decay

THEORY-PRACTICE MISMATCH #2

..... why doesn't averaging work?

If linear decay emulates averaging ... and works so well ...

Averaging needs momentum (done right)

Schedule-Free Learning Paradigm

Interpolation beta=0.9 (A kind of momentum)

Running Average Equivalent to:

$$x_t = \frac{1}{t} \sum_{i=1}^t z_i$$

$$y_{t} = (1 - \beta)z_{t} + \beta x_{t}$$

$$z_{t+1} = z_{t} - \gamma \nabla f(y_{t})$$

$$x_{t+1} = \left(1 - \frac{1}{t+1}\right)x_{t} + \frac{1}{t+1}z_{t+1}$$

Even for convex problems, Schedule-Free outperforms classical averaging and linear decay schedules! USPS

Schedule-Free does momentum in a different, more gradual way....

 $\beta = 0.9$ results in the current gradient evaluation point y containing 0.1 of the most recent gradient g_{t-1}

Classical momentum does the same thing! 0.1 of the most recent gradient is included in the step

But classical momentum incorporates the rest of the gradient over the next ~10 steps, whereas Schedule-Free incorporates it much **slower**, of the reminder of optimization

$$y_{t} = (1 - \beta)z_{t} + \beta x_{t}$$
$$z_{t+1} = z_{t} - \gamma \nabla f(y_{t})$$
$$x_{t+1} = \left(1 - \frac{1}{t+1}\right)x_{t} + \frac{1}{t+1}z_{t+1}$$

$$m_{t+1} = \beta m_t + (1 - \beta) \nabla f(x_t)$$

$$x_{t+1} = x_t - \alpha_t m_{t+1}$$

For general convex Lipschitz functions

Schedule-Free gives exactly optimal worst-case rates for ANY beta, whereas classical momentum for any fixed beta gives worse rates.

 $D = ||x_1 - x_*||$ and $\gamma = D/(G\sqrt{T})$. Then for any $\beta \in [0, 1]$, Schedule-Free SGD ensures:

 $\mathbb{E}[F(x_T)]$ -

Theorem 1. Suppose F is a convex function, and ζ_1, \ldots, ζ_T is an i.i.d. sequence of random variables such that $F = \mathbb{E}[f(x, \zeta)]$ for some function f that is G-Lipschitz in x. For any minimizer x_{\star} , define

$$-F(x_{\star})] \le \frac{DG}{\sqrt{T}}$$

Varying cosine-schedule length shows how Schedule-Free closely tracks the Pareto frontier of Loss v.s. training time.

ILSVRC 2012 ImageNet (ResNet-50)

Schedule-Free SGD

Schedule-Free AdamW

Schedule-Free AdamW also won the MLCommons AlgoPerf 2024 Algorithmic Efficiency Challenge Self Tuning Track!

Schedule-Free runs have much smoother loss curves and faster convergence

Thank you!