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Kernel Methods are sensitive to the choice of kernel.

Function Learning Problem

Find F minimizing L(F ).

The loss function can be

L(F ) =
N∑
i=1

max

{
0,

∣∣∣∣yi − F (xi)

∣∣∣∣− ε

}
,

where {(xi, yi)}Ni=1 ⊆ X × R.

Kernel methods

min
F∈Hk

L(F )

Hk =
{∑

i

k(x, xi)αi

∣∣∣∣ αi ∈ R, xi ∈ X
}

︸ ︷︷ ︸
Reproducing Kernel Hilbert Space

k : X × X → R is positive-definite kernel.

k is PD kernel if K = KT and K ≥ 0

K =


k(x1, x1) ... k(x1, xN )

.

.

.
. . .

k(xN , x1) ... k(xN , xN )

 Kernel Methods search a function for fixed k

How to optimally choose a kernel function?
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Kernel Learning does not require the choice of Kernel.

Kernel Learning

min
k∈K

min
F∈Hk

L(F )

Hk =
{∑

i

k(x, xi)αi

∣∣∣∣ αi ∈ R, xi ∈ X
}

where K is a set of PD kernels

K =

{
k =

∫
Z
NT (x, z)PN(y, z)dz

∣∣∣∣
P︷ ︸︸ ︷

P≥0
tr(P )=nP

}
,

where N : X × Z → Rnp – chosen functions,
where Z = [a, b]nz – integration interval.
where P ∈ Rnp×np – Positive-Definite matrix.

F ∈ H := ∪k∈KHk︸ ︷︷ ︸
Set of RKHSs

Finite-Dimensional Optimization

min
P∈P

min
α∈RN

L(Fα,P )

Fα,P (x) =
∑N

i=1
kP (x, xi)αi

kP (x1, x2) =

∫
Z
N

T
(x, z)PN(y, z)dz

BUT, the objective is not convex in both variables!

L(Fα,P ) ∼ max

{
0,

∣∣∣∣yi −
∑N

j=1
kP (xi, xj)αj

∣∣∣∣ − ε

}
︸ ︷︷ ︸

linear in k and linear in α

Direct method to solve[*] =⇒ Time complexity O(N4)

Q: How to efficiently solve Kernel Learning Problem?

[∗] G. Lanckriet and et. al. ”Learning the kernel matrix with semidefinite programming.” JMLR, 2004.
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How to solve Kernel Learning Problem?

1. Reformulate as a saddle-point optimization problem. 1 =
[
1 ... 1

]T
min
P∈P

Primal Subproblem︷ ︸︸ ︷
min
α∈Rd

L(Fα,k)

Fα,k(x) =
∑N

i=1
kP (x, xi)αi

min
P∈P

Dual Subproblem︷ ︸︸ ︷
max
α∈A

LD(Fα,P )

A = {α | 1Tα = 0, αi ∈ [−1, 1]}

LD(Fα,P ) =
N∑
i=1

yiαi−ε
N∑
i=1

|αi| −
1

C

N∑
i,j=1

kP (xi, xj)αiαj︸ ︷︷ ︸
concave in α and linear in k (convex)

3. Propose an algorithm.

Initialize P0 = I
For i = 1 to m do

space• αi = argmaxα∈A LD(α, Pi)
space• Si = argminP∈P LD(αi, P )
space• γi = argminγ∈[0,1] LD(αi, Pi + γ(Si − Pi))
space• Pi+1 = Pi + γk(Si − Pi)
enddo

Return αm, Pm.

aa
aa
aa
← SV regression O(N2.3)
← SDP (using analytic solution)
← line-search for P updates aa

Time complexity is ∼
vs SDP O(N4)

O(mN2.3)
m is number of iterations
N is size of data set.
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Numerical Examples

Convergence of Algorithm

Min-Max Formulation

min
P∈P

max
α∈A

LD(α, P ),

where LD(α, P ) is convex in α
and concave in P .

Duality Gap =

∣∣∣∣min
P∈P

LD(α, P )−max
α∈A

LD(α, P )

∣∣∣∣
• Just few iterations enough for convergence

Kernel Learning for Regression

Data set Method Error Time (s)
Gas Kernel Learning 0.23 ± 0.01 13580 ± 2060

d = 11 NNet 0.27 ± 0.03 1172 ± 100
N = 30000 RF 0.38 ± 0.02 16.44 ± 0.57

XGBoost 0.33 ± 0.005 49.46 ± 1.93

N – number of data points
d – dimension of the data set

Error =
∑
i=1

∥yi − F (xi)∥2

Using mutliple data sets => KL outperforms other algorithms by 23.6%
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Conclusion Remarks

Conclusion

• Parameterize kernels using positive-definite matrices.
• Formulate KL problem as the saddle point problem
• Propose the algorithm for solving Kernel Learning

More details in the paper.

• The convergence proof.
• The time and memory complexity of the algorithm
• More numerical experiments
• Alternative algorithm for solving Kernel Learning

Future Plans

• Scalability of Kernel Learning
• New class of kernel function
• Improved algorithm for Kernel Learning

Learning for the Grand Canyon

Data

Fitting
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