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TorchOpt
• Architecture Overview

Unified and expressive differentiable optimization programming

Implicit Differentiation Zero-order Differentiation

Linear Solver
- Conjugate Gradient
- Neumann Series

Linalg

High-performance and distributed execution runtime

Debugging Tool
- Gradient Graph 

Visualization

Optimizer MetaOptimizer FuncOptimizer

Gradient Transformation
- Optimizer: SGD, Adam, AdamW, RMSProp
- Hook: zero_nan_hook
- Clip: clip_grad_norm
- Combine: chain, chain_flat

TransformUpdateFn TransformInitFn Schedule

Accelerated Operator
- Symbolic Elimination
- C++ OpenMP / CUDA

Distributed
- Distributed Autograd
- Auto Parallelization
- Heterogenous Computational Graph

Optimized PyTree Utilities
- Cache-friendly C++ Binding
- Python Built-in Type Support
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Unified and expressive differentiation 
mode for differentiable optimization
• Explicit Gradient Differentiation
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Unified and expressive differentiation 
mode for differentiable optimization
• Implicit Gradient Differentiation
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Unified and expressive differentiation 
mode for differentiable optimization
• Zero-order Gradient Differentiation
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Unified and expressive differentiation 
mode for differentiable optimization
• Zero-order Gradient Differentiation



TorchOpt
• High-performance and distributed execution runtime

Accelerated Operator
- Symbolic Elimination
- C++ OpenMP / CUDA

Distributed
- Distributed Autograd
- Auto Parallelization
- Heterogenous Computational Graph

Optimized PyTree Utilities
- Cache-friendly C++ Binding
- Python Built-in Type Support



High-performance and distributed execution 
runtime

• OpTree: Optimized PyTree Utilities
• Memory Efficient and High-Performance (20x faster than torch.utils._pytree)

• Cache Friendly (absl::InlinedVector)

• Built-in support for common Python containers (2x faster than jax.tree_util)
• tuple, list, dict, namedtuple

• OrderedDict, defaultdict, deque

• Support both “None is leaf” (default of PyTorch) and “None is node” (default of JAX)

• Friendly for tensor container extraction:

nn.Module._parameters: Dict[str, Optional[Tensor]]



High-performance and distributed execution 
runtime
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High-performance and distributed execution 
runtime
• OpTree: Optimized PyTree Utilities



High-performance and distributed execution 
runtime
• CPU/GPU-accelerated Optimizers

• Implement explicit shortcuts (forward/backward)  (reduces 30%+ operations)

• C++ OpenMP & CUDA



High-performance and distributed execution 
runtime
• Distributed Training

• User friendly API (distributed. auto_init_rpc, distributed.backward, )

• Auto Parallelization
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High-performance and distributed execution 
runtime
• Distributed Training



Thank you!
jieren9806@gmail.com
xidong.feng.20@ucl.ac.uk

benjaminliu.eecs@gmail.com
xuehaipan@pku.edu.cn

TorchOpt: https://github.com/metaopt/torchopt

OpTree:https://github.com/metaopt/optree
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