
TorchOpt: An Efficient Library for Differentiable
Optimization

Jie Ren*, Xidong Feng*, Bo Liu*, Xuehai Pan*,

MetaOPT Team

Yao Fu, Luo Mai♱, Yaodong Yang♱

TorchOpt
• Architecture Overview

Unified and expressive differentiable optimization programming

Implicit Differentiation Zero-order Differentiation

Linear Solver
- Conjugate Gradient
- Neumann Series

Linalg

High-performance and distributed execution runtime

Debugging Tool
- Gradient Graph

Visualization

Optimizer MetaOptimizer FuncOptimizer

Gradient Transformation
- Optimizer: SGD, Adam, AdamW, RMSProp
- Hook: zero_nan_hook
- Clip: clip_grad_norm
- Combine: chain, chain_flat

TransformUpdateFn TransformInitFn Schedule

Accelerated Operator
- Symbolic Elimination
- C++ OpenMP / CUDA

Distributed
- Distributed Autograd
- Auto Parallelization
- Heterogenous Computational Graph

Optimized PyTree Utilities
- Cache-friendly C++ Binding
- Python Built-in Type Support

TorchOpt
• Unified and expressive differentiable optimization programming

Implicit Differentiation Zero-order Differentiation

Linear Solver
- Conjugate Gradient
- Neumann Series

Linalg

Debugging Tool
- Gradient Graph

Visualization

Optimizer MetaOptimizer FuncOptimizer

Gradient Transformation
- Optimizer: SGD, Adam, AdamW, RMSProp
- Hook: zero_nan_hook
- Clip: clip_grad_norm
- Combine: chain, chain_flat

TransformUpdateFn TransformInitFn Schedule

Unified and expressive differentiation
mode for differentiable optimization
• Explicit Gradient Differentiation

𝜃0 𝜃1 𝜃′

Unrolled Inner Loop optimization

𝛻𝜃1
𝐿𝑖𝑛(𝜑0, 𝜃1)

𝜑0

𝜃′𝜃 Non-trivial

Transformation

General Outer-loop

𝜑 Outer Parameter 𝜃 Inner Parameter Forward Pass Backward Pass𝐿𝑖𝑛(𝜑, 𝜃): Inner Loss F: Iterative Function

𝛻𝜃0
𝐿𝑖𝑛(𝜑0, 𝜃0)1

2

2

Unified and expressive differentiation
mode for differentiable optimization
• Explicit Gradient Differentiation

Unified and expressive differentiation
mode for differentiable optimization
• Implicit Gradient Differentiation

𝜑0

𝜃′𝜃 Non-trivial

Transformation

General Outer-loop

𝜑 Outer Parameter 𝜃 Inner Parameter Forward Pass Backward Pass𝐿𝑖𝑛(𝜑, 𝜃): Inner Loss F: Iterative Function

1

2

Iterative optimization/ Fixed-point iteration

𝜃0 𝜃1 𝜃′𝜃2 𝜃𝑛
F F F

…

2

Unified and expressive differentiation
mode for differentiable optimization
• Implicit Gradient Differentiation

Unified and expressive differentiation
mode for differentiable optimization
• Zero-order Gradient Differentiation

𝜑0

𝜃′𝜃 Non-trivial

Transformation

General Outer-loop

𝜑 Outer Parameter 𝜃 Inner Parameter Forward Pass Backward Pass𝐿𝑖𝑛(𝜑, 𝜃): Inner Loss F: Iterative Function

1

2

𝜃′𝜃0

Non-smooth/ Non-Differentiable Function

Non-diff process

2

Unified and expressive differentiation
mode for differentiable optimization
• Zero-order Gradient Differentiation

TorchOpt
• High-performance and distributed execution runtime

Accelerated Operator
- Symbolic Elimination
- C++ OpenMP / CUDA

Distributed
- Distributed Autograd
- Auto Parallelization
- Heterogenous Computational Graph

Optimized PyTree Utilities
- Cache-friendly C++ Binding
- Python Built-in Type Support

High-performance and distributed execution
runtime

• OpTree: Optimized PyTree Utilities
• Memory Efficient and High-Performance (20x faster than torch.utils._pytree)

• Cache Friendly (absl::InlinedVector)

• Built-in support for common Python containers (2x faster than jax.tree_util)
• tuple, list, dict, namedtuple

• OrderedDict, defaultdict, deque

• Support both “None is leaf” (default of PyTorch) and “None is node” (default of JAX)

• Friendly for tensor container extraction:

nn.Module._parameters: Dict[str, Optional[Tensor]]

High-performance and distributed execution
runtime
• OpTree: Optimized PyTree Utilities

High-performance and distributed execution
runtime
• OpTree: Optimized PyTree Utilities

High-performance and distributed execution
runtime
• CPU/GPU-accelerated Optimizers

• Implement explicit shortcuts (forward/backward) (reduces 30%+ operations)

• C++ OpenMP & CUDA

High-performance and distributed execution
runtime
• Distributed Training

• User friendly API (distributed. auto_init_rpc, distributed.backward,)

• Auto Parallelization

High-performance and distributed execution
runtime
• Distributed Training

• User friendly API (distributed. auto_init_rpc, distributed.backward,)

• Auto Parallelization

High-performance and distributed execution
runtime
• Distributed Training

• User friendly API (distributed. auto_init_rpc, distributed.backward,)

• Auto Parallelization

High-performance and distributed execution
runtime
• Distributed Training

Thank you!
jieren9806@gmail.com
xidong.feng.20@ucl.ac.uk

benjaminliu.eecs@gmail.com
xuehaipan@pku.edu.cn

TorchOpt: https://github.com/metaopt/torchopt

OpTree:https://github.com/metaopt/optree

mailto:jieren9806@gmail.com
mailto:xidong.feng.20@ucl.ac.uk
mailto:benjaminliu.eecs@gmail.com
mailto:xuehaipan@pku.edu.cn
https://github.com/metaopt/torchopt
https://github.com/metaopt/optree

	Default Section
	Slide 1: TorchOpt: An Efficient Library for Differentiable Optimization
	Slide 2: TorchOpt
	Slide 3: TorchOpt
	Slide 4: Unified and expressive differentiation mode for differentiable optimization
	Slide 5: Unified and expressive differentiation mode for differentiable optimization
	Slide 6: Unified and expressive differentiation mode for differentiable optimization
	Slide 7: Unified and expressive differentiation mode for differentiable optimization
	Slide 8: Unified and expressive differentiation mode for differentiable optimization
	Slide 9: Unified and expressive differentiation mode for differentiable optimization

	High-Performance
	Slide 10: TorchOpt
	Slide 11: High-performance and distributed execution runtime
	Slide 12: High-performance and distributed execution runtime
	Slide 13: High-performance and distributed execution runtime
	Slide 14: High-performance and distributed execution runtime
	Slide 15: High-performance and distributed execution runtime
	Slide 16: High-performance and distributed execution runtime
	Slide 17: High-performance and distributed execution runtime
	Slide 18: High-performance and distributed execution runtime
	Slide 19

