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Introduction

We consider the existence of fixed points of non-
negative neural networks, i.e., neural networks that
take as an input and produce as an output non-
negative vectors. We first show that nonnegative
neural networks with nonnegative weights and bi-
ases can be recognized as monotonic and (weakly)
scalable functions within the framework of nonlin-
ear Perron-Frobenius theory. This fact enables us to
provide conditions for the existence of fixed points
of nonnegative neural networks, and these conditions
are weaker than those obtained recently using argu-
ments in convex analysis.

Preliminaries

The nonnegative cone and its interior (i.e., the pos-
itive cone) are denoted as Rn

+ := {x ∈ Rn | x ≥ 0}
and int(Rn

+) := {x ∈ Rn | x > 0}, respectively. Let
x, y ∈ Rn

+. The partial ordering induced by the non-
negative cone is denoted as x ≤ y ⇔ y − x ∈ Rn

+.
Similarly, for x ̸= y, x < y ⇔ y − x ∈ Rn

+, and
x ≪ y ⇔ y − x ∈ int(Rn

+). The fixed point set of
a function f : X → Y with Y and X being subsets
of a given set S is denoted as

Fix(f ) = {x⋆ ∈ X | f (x⋆) = x⋆}.

Nonnegative mappings

A continuous mapping f : Rs
+ → Rp is said to be

1 nonnegative if
∀x ∈ Rs

+ f (x) ∈ Rp
+, (1)

2 monotonic if
∀x, x̃ ∈ Rs

+ x ≤ x̃ =⇒ f (x) ≤ f (x̃), (2)
3 weakly scalable if

∀x ∈ Rs
+ ∀ρ ≥ 1 f (ρx) ≤ ρf (x), (3)

4 scalable if
∀x ∈ Rs

+ ∀ρ > 1 f (ρx) ≪ ρf (x). (4)

Neural network model

Let Ti : Rki−1 → Rki of the form
Ti(xi−1)σi(Wixi−1 + bi) be the i-th layer of
an n-layered feed forward neural network,
i = 1, . . . , n, where xi−1 ∈ Rki−1 is the input to
the layer, Wi : Rki−1 → Rki is the linear weight
operator (matrix), bi ∈ Rki is the bias, and
σi : Rki → Rki is the activation function. A
neural network T is then the composition

T = Tn ◦ · · · ◦ T1, (5)
Hereafter, we assume that the input and output
layers have the same dimension k0 = kn,

Classes of mappings

We use the convention that each subscript applied
to A refer to one of the above properties, so that,
for example:
• continuous and nonnegative mappings are

(A0)-mappings;
• continuous, nonnegative, and monotonic

mappings are (A0,1)-mappings;
• continuous, nonnegative, monotonic, and weakly

scalable mappings are (A0,1,2)-mappings; and
• continuous, nonnegative, monotonic, and scalable

mappings are (A0,1,2,3)-mappings.
We note that the above classes of mappings satisfy
A0,1,2,3 ⊂ A0,1,2 ⊂ A0,1 ⊂ A0.

Activation Functions

The following two lists provide examples of widely-
used continuous scalar concave activation functions
(with their domains restricted to R+), and, hence,
(A0,1,2)-scalar activation functions.
1 (L1) continuous scalar concave activation
functions satisfying limξ→∞ σ′(ξ) = 0:
• (ReLU6) x 7→ min{x, 6}
• (hyperbolic tangent) x 7→ tanh x
• (softsign) x 7→ x

1+x
• (sigmoid) x 7→ 1

1+exp (−x)

1 (L2) continuous scalar concave activation function
satisfying limξ→∞ σ′(ξ) = 1:
• (ReLU) x 7→ x

Asymptotic mapping

Let T : Rk
+ → Rk

+ be an (A0,1,2)-neural network
of the form (5). The asymptotic mapping associ-
ated with T is the mapping defined by

T∞ : Rk
+ → Rk

+ : x 7→ limp→∞
1
p
T (px). (6)

We recall that the above limit always exists.

Nonlinear spectral radius

Let T : Rk
+ → Rk

+ be an (A0,1,2)-neural network
of the form (5). The spectral radius of the corre-
sponding asymptotic mapping T∞ is defined by

ρ(T∞) = max{λ ∈ R+ : ∃ x ∈ Rk
+\{0},

s.t. T∞(x) = λx} ∈ R+.
(7)

If all layers use activation function from (L2),
then ρ(T∞) = ρ(Π1

i=n Wi). On the other hand,
of at least one layer of T uses activation function
from list (L1), then ρ(T∞) = 0.

Fixed points

• If T is (A0,1,2,3) and ρ(T∞) < 1, then the fixed
point exists, is unique, and the fixed point
iteration of T converges to the fixed-point for any
x1 ∈ Rn

+.

• If T is (A0,1,2) and ρ(T∞) < 1, then the fixed
point exists and the fixed point iteration of T
converges to the least fixed point from x1 = 0. If
T is also primitive (T m(0) ≫ 0), then the fixed
point set Fix(T ) is an interval and the fixed point
iteration of T converges to x⋆ ∈ Fix(T ) for any
x1 ∈ int(Rn

+).
• If T is (A0,1), then assume that there exists T2

which is (A0,1,2). If ∀x ∈ Rn
+ T (x) ≤ T2(x) and

the fixed point exists for T2, then for T the fixed
point also exists and the fixed point iteration of T
converges to the least fixed point from x1 = 0.

• If T is (A0), then assume that there exists T2
which is (A0,1). If ∀x ∈ Rn

+ T (x) ≤ T2(x) and the
fixed point exists for T2, then for T the fixed point
also exists.

Scaling spectral radius

For neural network T (autoencoder) which is (A0,1,2)
with ρ(T∞) > 0, we can modify the spectral radius
to be close to 1, which is an optimal value of slow
convergence to the fixed point, which results in to
lower loss.
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