# **Evaluating Large Language Models** - Principles, Approaches, and Applications

NeurIPS Tutorial

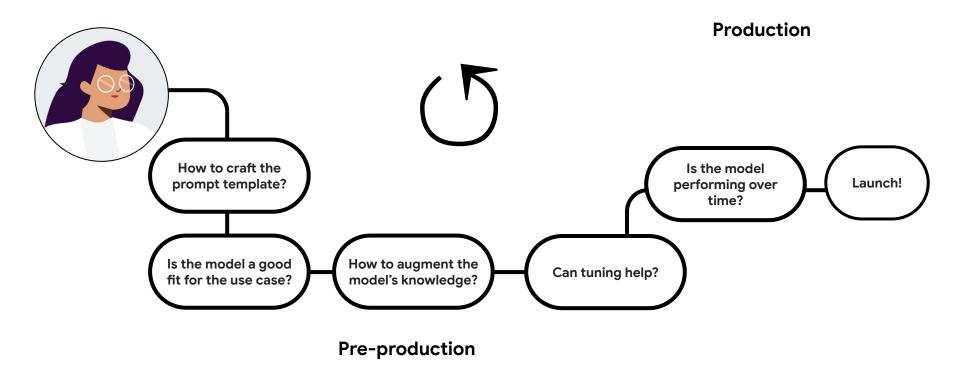
Bo Li · Irina Sigler · Yuan (Emily) Xue

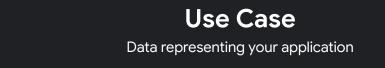
# Agenda

01 Intro

- 02 Quality evaluation
- 03 Safety evaluation
- 04 Wrap up & QA







Task-specific evaluation

### Context

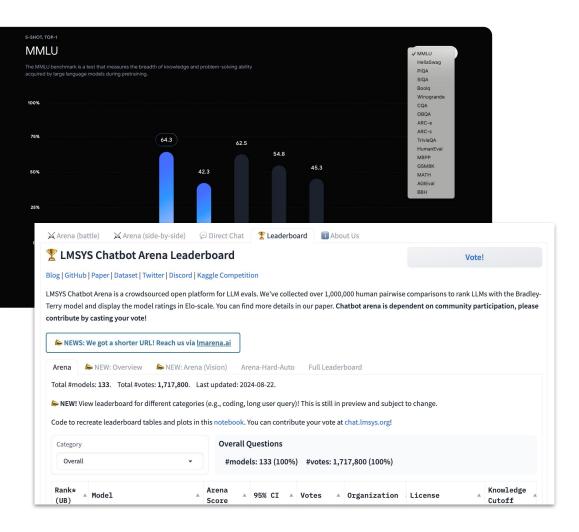
Model is only one of the lego bricks

Criteria

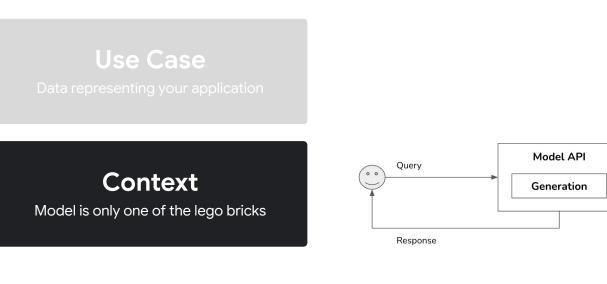
Your definition of success

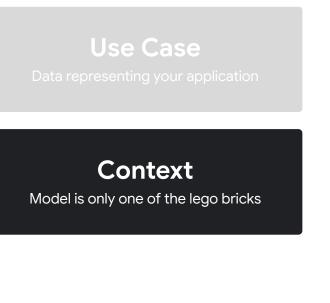
### Use Case

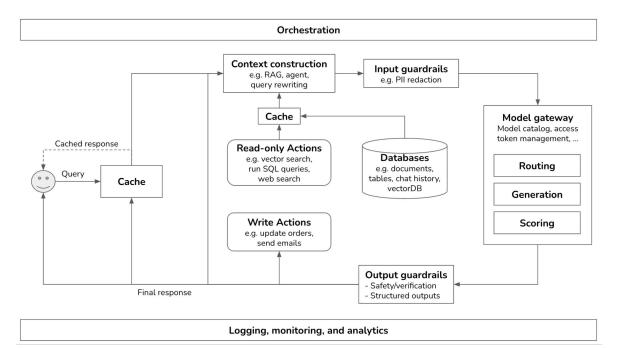
Data representing your application













### Use Case

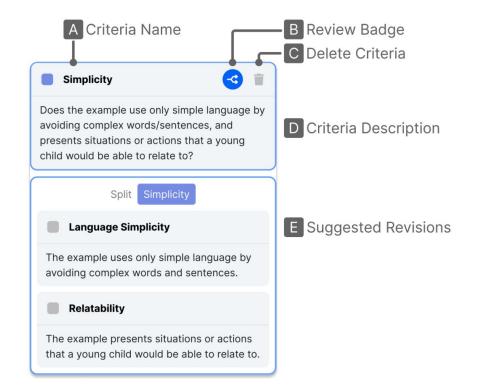
Data representing your application

#### Context

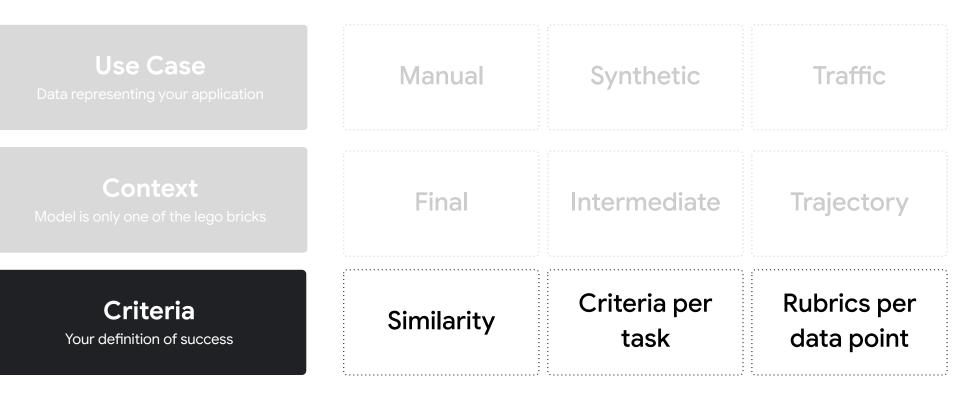
Model is only one of the lego bricks

### Criteria

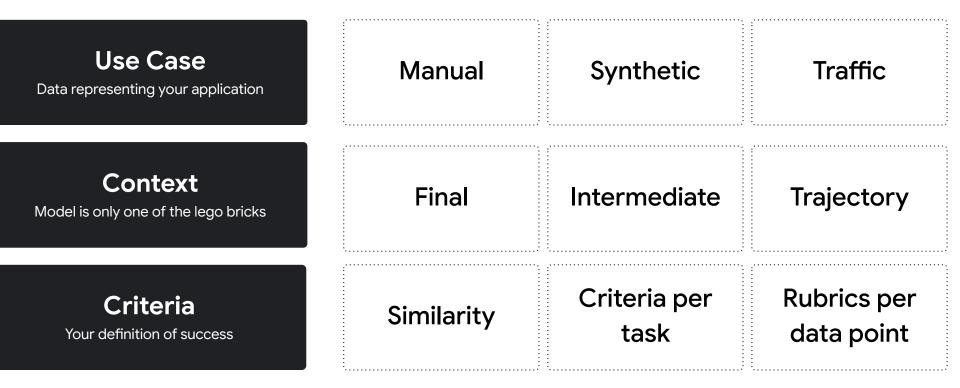
Your definition of success



See: <u>Kim et al. 2024</u>, for details on specific criteria & <u>Shankar et al. 2024</u> for iterative criteria refinement



See: <u>Wiles et al. 2024 for text to image</u> evaluation with gecko



Automatic evaluation is the holy grail, but still a work in progress. Without it, engineers are left with eye-balling results and testing on a limited set of examples, and having a 1+ day delay to know metrics. The model eval was the key to success in order to put a LLM in production. We couldn't afford a manual check and refinement in a non-static ecosystem.

Stefano Frigerio, Head of Technical Leads, Generali Italia

Linkedin team, 2024, Musings on building a Generative AI product

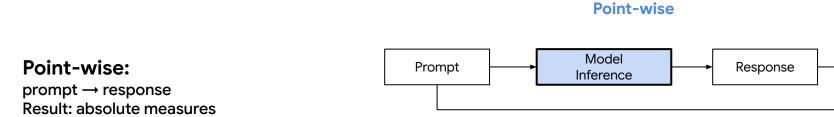
### 02

# **Quality Evaluation**

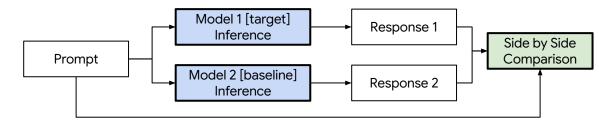
### **Evaluation – Problem Statement**

### F (subject, criteria) → result

# **Evaluation – Subject**



#### Pair-wise (Side by Side)



#### **Pair-wise:**

prompt  $\rightarrow$  (response 1, response 2) Result: relative preference Metrics

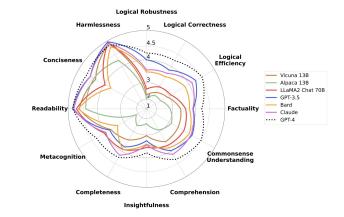
Computation

# **Evaluation – Criteria**

Aspect (Dimension):

- General text generation: e.g., <u>fluency, coherence</u>,
- Task related
  - Summary: e.g., <u>Conciseness, Comprehensiveness</u>,
  - Openbook Q/A: Groundedness
  - Code: correctness of execution result
  - Tool use: tool selection accuracy, parameter value correctness
- User specific
  - Entertaining, Engaging, intuitive

#### Rubrics



Source: FLASK (Ye 2023)

5: (Very good). The summary follows instructions, is grounded, concise, fluent and aligned with reference summary. 4: (Good). The summary follows instructions, is grounded, concise, and fluent but not aligned with reference summary. 3: (Ok). The summary mostly follows instructions, is grounded, but is not concise, not fluent, not aligned with reference summary.

2: (Bad). The summary is grounded, but does not follow the instructions.

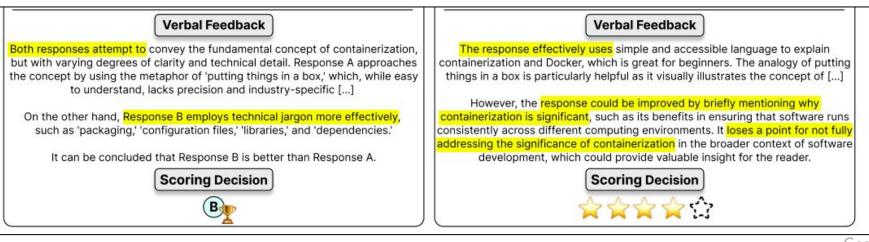
1: (Very bad). The summary is not grounded.

#### F (subject, criteria) $\rightarrow$ result

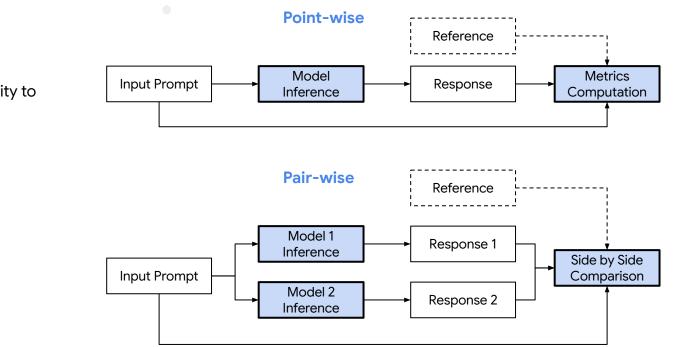
# **Evaluation – Result**

- Rating: qualitative measure
  - Point-wise: Absolute measure
  - Pair-wise: Relative preference
- Rationale: verbal feedback
  - Explanation to user
  - Captures reasoning thoughts and improves rating quality

| 3   | 5: great | 5: great quality |  |
|-----|----------|------------------|--|
|     |          | _                |  |
|     | 2 wins   |                  |  |
| tie | 2 wins   | ]                |  |
|     |          | 2 wins           |  |



# **Evaluation – Reference**



- Evaluation Perspective: Similarity to Reference
- Discriminative task:
  - Ground truth
- Generative task:
  - Representative sample

### **Evaluation – Method**

**F** (subject, criteria, reference\*)  $\rightarrow$  result

- Computation
- Human
- LLM (LLM as Judge, as critic, Autorater)

# Method – Computation (1)

#### Quantify the similarity between response and reference

- Reference Required
- Support point-wise eval
- Only provide score as result
- Does not support fine-grained criteria specificification

#### Approaches

- Lexicon similarity: e.g., <u>ROUGE</u>, <u>BLEU</u>
- Embedding similarity: E.g. <u>BERTScore</u>, <u>BARTscore</u>

#### Limitation

- Sensitive to the choice of reference.
- Lexicon similarity only measures syntactical matches rather than semantics
- Weak correlation with human judgment in complex, open-ended tasks.

#### Usage

- Scalable evaluation in simple settings
- Break down big eval tasks into smaller pieces (e.g. in Function Calling evaluation, parameter value comparison)
- Low-cost sanity check and monitoring of tuning progress
- Complement other approaches (human, autorater) to provide an objective assessment

#### F ((prompt, response), reference) $\rightarrow$ score

| Metrics     | Natur | Naturalness Cohe |       | erence Engagingness |        | Groundedness |       | Average |       |       |
|-------------|-------|------------------|-------|---------------------|--------|--------------|-------|---------|-------|-------|
| wientes     | ρ     | au               | ρ     | au                  | $\rho$ | au           | ρ     | au      | ρ     | au    |
| ROUGE-L     | 0.146 | 0.176            | 0.203 | 0.193               | 0.300  | 0.295        | 0.327 | 0.310   | 0.244 | 0.244 |
| BLEU-4      | 0.175 | 0.180            | 0.235 | 0.131               | 0.316  | 0.232        | 0.310 | 0.213   | 0.259 | 0.189 |
| BERTScore   | 0.209 | 0.226            | 0.233 | 0.214               | 0.335  | 0.317        | 0.317 | 0.291   | 0.274 | 0.262 |
| G-EVAL-3.5  | 0.539 | 0.532            | 0.544 | 0.519               | 0.691  | 0.660        | 0.567 | 0.586   | 0.585 | 0.574 |
| G-EVAL-4    | 0.565 | 0.549            | 0.605 | 0.594               | 0.631  | 0.627        | 0.551 | 0.531   | 0.588 | 0.575 |
| ChatGPT(SA) | 0.474 | 0.421            | 0.527 | 0.482               | 0.599  | 0.549        | 0.576 | 0.558   | 0.544 | 0.503 |
| ChatGPT(MA) | 0.441 | 0.396            | 0.500 | 0.454               | 0.664  | 0.607        | 0.602 | 0.583   | 0.552 | 0.510 |
| GPT-4(SA)   | 0.532 | 0.483            | 0.591 | 0.535               | 0.734  | 0.676        | 0.774 | 0.750   | 0.658 | 0.611 |
| GPT-4(MA)   | 0.630 | 0.571            | 0.619 | 0.561               | 0.765  | 0.695        | 0.722 | 0.700   | 0.684 | 0.632 |

On SummEval Spearman (p) and Kendall-Tau ( $\tau$ )

Source: G-Eval (Liu 2023)

# Method – Computation (2)

Goode

Example: ROUGE (Recall-Oriented Understudy for Gisting Evaluation)

- The score ranges from 0 (poor similarity) to 1 (strong similarity)
- A set of metrics:
  - ROUGE-n examines word groups (n-grams).

 $RECALL = \frac{Overlapping\ number\ of\ n-grams}{Number\ of\ n-grams\ in\ the\ reference}$ 

 $PRECISION = \frac{Overlapping \, number \, of \, n-grams}{Number \, of \, n-grams \, in \, the \, candidate}$ 

- ROUGE-L is based on the longest common subsequence (LCS) appear in the same order.
- ROUGE-Lsum: based on ROUGE-L at the sentence level; aggregates all the results for the final score; suitable for tasks where sentence level extraction is valuable such as extractive summarization tasks.
- Best Practice: Preprocessing to remove any noise or irrelevant information (e.g., punctuation, stop words) that might interfere with the evaluation process.

```
from rouge_score import rouge_scorer
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL', 'rougeLsum'])
scores = scorer.score('The quick brown fox jumps over the lazy dog', 'The quick brown dog jumps on the log.')
print(scores)
{
    'rouge1': Score(precision=0.75, recall=0.67, fmeasure=0.71),
    'rouge2': Score(precision=0.29, recall=0.25, fmeasure=0.27),
    'rougeL': Score(precision=0.625, recall=0.56, fmeasure=0.59),
    'rougeLsum': Score(precision=0.625, recall=0.56, fmeasure=0.59)
}
```

# Method – Human

#### F (subject, criteria, reference\*) -> result

F ((prompt, **response**), criteria) -> score, rational F ((prompt, **response1**, **response2**), criteria) -> preference, rational

Goal: Ensure quality and control cost

#### Phased Approach:

- Start with Samples: train human evaluators and calibrate their judgments using a clear rubric.
- Proceed to Full Scale: expand evaluation to a larger set; allows for iterative refinement of the evaluation process.

#### Limitations:

- Expensive and time-Consuming
- Human Expertise Matters: The quality of human evaluation depends on the expertise and consistency of the evaluators.
  - $\circ$  Crowdsourcing.
  - Annotator Services: Engage professional annotation services for higher precision.
  - Domain Expertise: For specialized tasks, prioritize evaluators with relevant domain knowledge to ensure meaningful assessments.
- Usage:
  - Production Release: directly inform decision-making for product readiness, ensuring that quality standards meet production requirements.
  - calibrate and optimize Autorater: Use a small number of human labelled data to assess the quality of autorater, iterate its quality as needed, and use autorater for scalable evaluation.

# Method – AutoRater

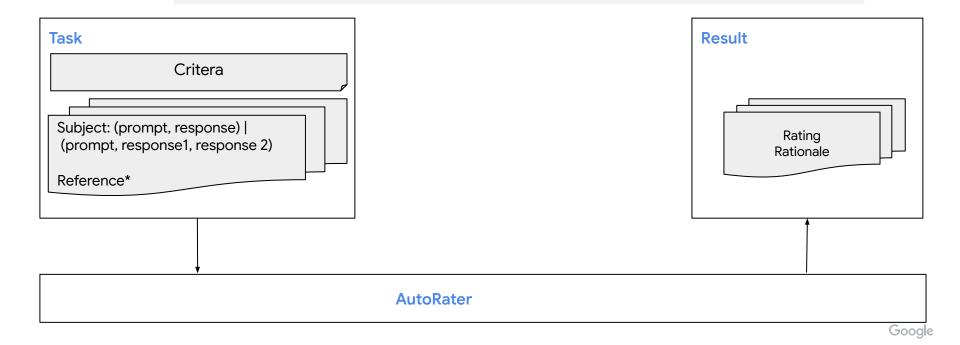
F ((prompt, **response**), criteria, reference\*) -> score, rational F ((prompt, **response1, response2**), criteria, reference\*) -> preference, rational

 $\rightarrow$  Same scope as human evaluation

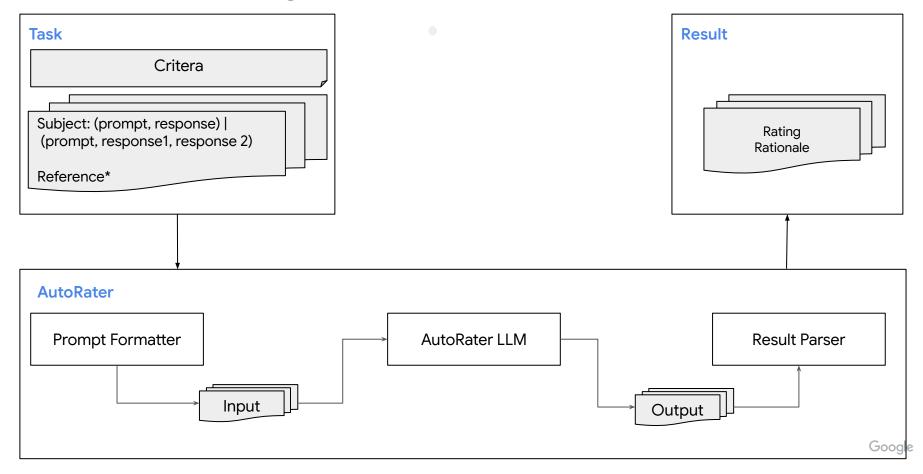
- How to use
- How to design
- How to evaluate (meta-evaluation)
- How to align with your needs
- Limitations and migations

### AutoRater – How to Use

F ((prompt, **response**), criteria, reference\*) -> score, rational F ((prompt, **response1**, **response2**), criteria, reference\*) -> preference, rational

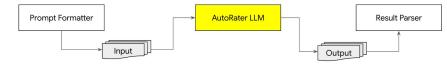


### **AutoRater – Design Framework**



# **AutoRater – Types of Model**

- Generative Models
  - Leverage language generation capabilities to deliver both score and detailed rationales (e.g.,CoT explanations).
  - General (foundation model) vs fine-tuned specialized autorater model
  - Flexibility in output formatting: Support both pointwise scoring and pairwise comparisons
  - Need a result parser to get the score from the text output, sometimes this may fail due to malformatting.
  - Can directly prompt foundation model without fine-tuning or be fine-tuned for improved accuracy
- Discriminative Models (Reward Models).
  - Trained to predict scalar scores
  - Optimized to deliver precise and consistent evaluations based on specified criteria
  - Support both pointwise scoring and pairwise comparisons
  - No support for rationale and nuanced reasoning
- Implicit Reward Models via DPO, Although less common, generally underperform compared to discriminative and generative models and are not the primary focus here.

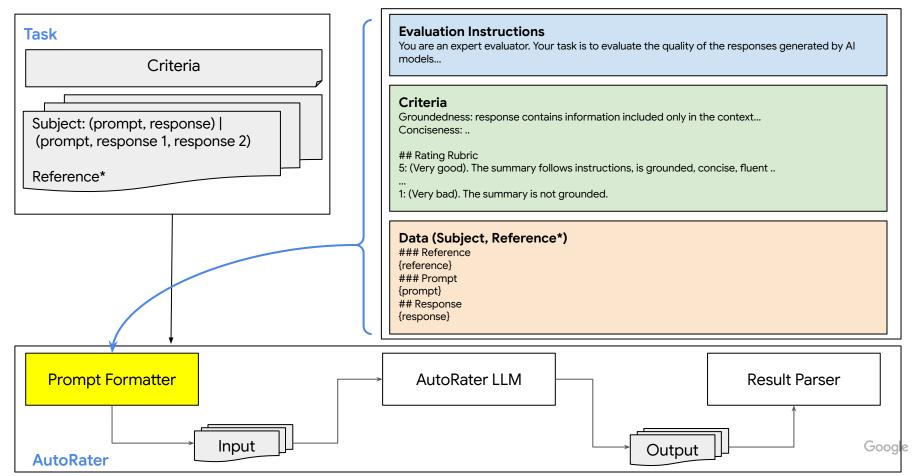


|    | Model                                             | Model Type 🔺      |
|----|---------------------------------------------------|-------------------|
| 1  | Skywork/Skywork-Reward-Gemma-2-27B-v0.2           | Seq. Classifier   |
| 2  | <pre>nvidia/Llama-3.1-Nemotron-70B-Reward *</pre> | Custom Classifier |
| 3  | Skywork/Skywork-Reward-Gemma-2-27B 🔺              | Seq. Classifier   |
| 4  | SF-Foundation/TextEval-Llama3.1-70B *             | Generative        |
| 5  | meta-metrics/MetaMetrics-RM-v1.0                  | Custom Classifier |
| 6  | Skywork/Skywork-Critic-Llama-3.1-708 🔺            | Generative        |
| 7  | Skywork/Skywork-Reward-Llama-3.1-88-v0.2          | Seq. Classifier   |
| 8  | nicolinho/ORM-Llama3.1-88 🔺                       | Seq. Classifier   |
| 9  | LxzGordon/URM-LLaMa-3.1-88                        | Seq. Classifier   |
| 10 | Salesforce/SFR-LLaMa-3.1-70B-Judge-r *            | Generative        |
| 11 | Skywork/Skywork-Reward-Llama-3.1-88 🔺             | Seq. Classifier   |
| 12 | general-preference/GPM-Llama-3.1-88 🔺             | Custom Classifier |
| 13 | nvidia/Nemotron-4-3408-Reward *                   | Custom Classifier |
| 14 | Ray2333/GRM-Llama3-8B-rewardmodel-ft 🔺            | Seq. Classifier   |
| 15 | SF-Foundation/TextEval-OffsetBias-12B *           | Generative        |

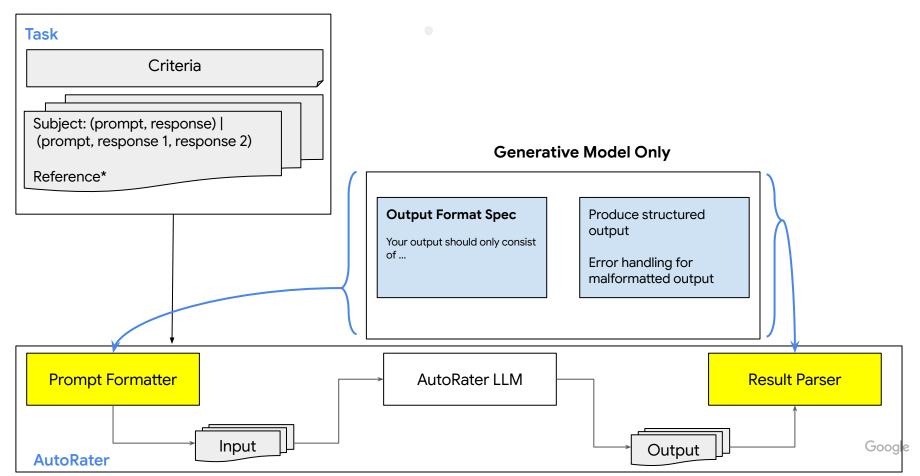
#### Source: RewardBench



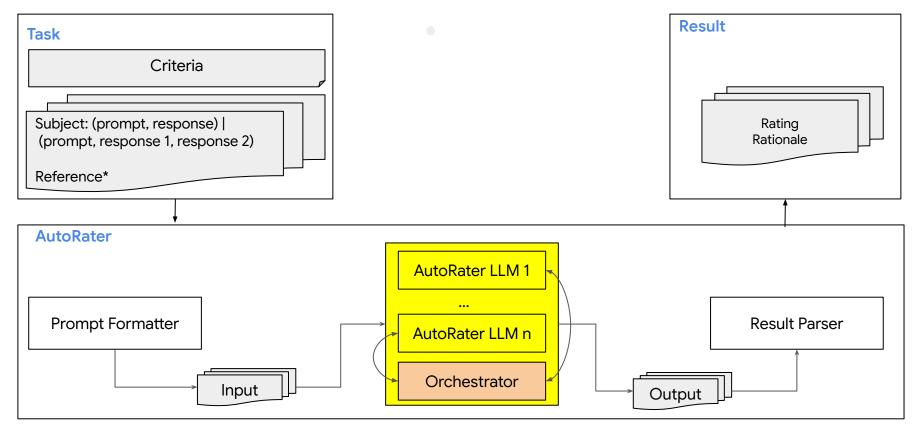
### **AutoRater – Prompt Formatter**



### **AutoRater – Prompt Formatter**

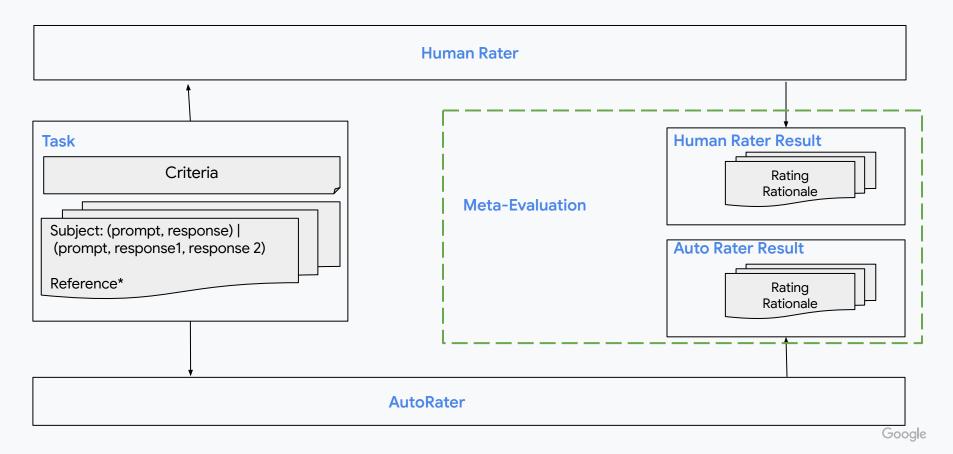


### **AutoRater – Multiple Rater Orchestration**



Reference: Juries (Verga 2024), ChatEval (Chan 2023), Agent-as-Judge (Zhuge 2024), MATEval (Li 2024),

# **Meta Evaluation - Overview**



## **Meta Evaluation - Metrics**

- Correlations (Point-wise score)
  - **Spearman correlation**: Good for monotonic relationships, less sensitive to outliers.
  - **Kendall's Tau**: Suitable for ranked data and assessing concordance/discordance, handles ties well.
  - **Pearson correlation**: Best for linear relationships with normally distributed data.
- Agreement (Pair-wise preference)
  - **Cohen's Kappa**: Measures the agreement between two raters on categorical data, accounting for chance agreement [weight=quadric]
  - Opinions vary on how scores should be interpreted, but in general κ > 0.8 is considered a strong correlation and κ > 0.6 is a moderate correlation.
  - Confusion matrix and accuracy

| Metrics     | Naturalness |       | Coherence |       | Engagingness |       | Groundedness |       | Average |       |
|-------------|-------------|-------|-----------|-------|--------------|-------|--------------|-------|---------|-------|
| wientes     | ρ           | au    | ρ         | au    | ρ            | au    | ρ            | au    | ρ       | au    |
| ROUGE-L     | 0.146       | 0.176 | 0.203     | 0.193 | 0.300        | 0.295 | 0.327        | 0.310 | 0.244   | 0.244 |
| BLEU-4      | 0.175       | 0.180 | 0.235     | 0.131 | 0.316        | 0.232 | 0.310        | 0.213 | 0.259   | 0.189 |
| BERTScore   | 0.209       | 0.226 | 0.233     | 0.214 | 0.335        | 0.317 | 0.317        | 0.291 | 0.274   | 0.262 |
| G-EVAL-3.5  | 0.539       | 0.532 | 0.544     | 0.519 | 0.691        | 0.660 | 0.567        | 0.586 | 0.585   | 0.574 |
| G-EVAL-4    | 0.565       | 0.549 | 0.605     | 0.594 | 0.631        | 0.627 | 0.551        | 0.531 | 0.588   | 0.575 |
| ChatGPT(SA) | 0.474       | 0.421 | 0.527     | 0.482 | 0.599        | 0.549 | 0.576        | 0.558 | 0.544   | 0.503 |
| ChatGPT(MA) | 0.441       | 0.396 | 0.500     | 0.454 | 0.664        | 0.607 | 0.602        | 0.583 | 0.552   | 0.510 |
| GPT-4(SA)   | 0.532       | 0.483 | 0.591     | 0.535 | 0.734        | 0.676 | 0.774        | 0.750 | 0.658   | 0.611 |
| GPT-4(MA)   | 0.630       | 0.571 | 0.619     | 0.561 | 0.765        | 0.695 | 0.722        | 0.700 | 0.684   | 0.632 |

Spearman (p) and Kendall-Tau ( $\tau$  )

Source: G-Eval (Liu 2023)

# Meta-Evaluation – Datasets and Benchmarks

#### Datasets

- <u>MTBench</u> and <u>Chatbot Arena</u> [pair-wise] Multi-turn conversations, crowdsource preference annotations.
- HelpSteer and <u>HelpSteer2</u> [pair-wise] helpful, factually correct and coherent, leveraging human annotators.
- <u>LLMBar</u> [pair-wise] manually curated challenging meta-evaluation to assess instruction-following.
- <u>AlpacaEval</u> and <u>AlpacaFarm</u> [pair-wise], chat, low-cost simulation of pairwise feedback from API models.
- <u>Anthropic Helpful</u> and <u>Anthropic HHH</u> [pair-wise]: human alignment capability on helpful, honest, harmless.
- <u>summarize\_from\_feedback</u> [pair-wise], summary comparison.
- <u>HuanEvalPack</u> [point-wise] coding abilities.
- <u>FLASK</u> [point-wise]: fine-grained scoring with 4 primary abilities divided into 12 fine-grained skills.

#### Benchmarks

- <u>RewardBench</u>: [5 category with 27 datasets], comprehensive benchmark that covers chat, reasoning, and safety.
- <u>LLM-AggreFact</u>; [11 datasets] fact verification benchmark covering: fact verification, faithfulness of summary, etc.
- <u>JudgeBench</u>: benchmark on challenging response pairs spanning knowledge, reasoning, math, and coding.
- <u>WildBench</u>: WB-Reward and WB-Score with fine-grained outcomes. e.g. for pairwise comparison: much better, slightly better, slightly worse, much worse, or a tie.
- <u>EvalBiasBench</u>: bias benchmark
- <u>CoBBLEr</u> : bias benchmark

# Meta-Evaluation – From Benchmark to Your Task

#### • Prompt curation:

- Align closely with your production usage distribution
- For benchmarks such as HelpSteer, crowdsourcing is used to cover the diverse range of LLM use cases.
- Prompts from benchmark datasets may not align with your production usage pattern. You need to build your own prompt sets (e.g., initially manually and/or sampling from production traffic).

#### Candidate Responses:

- Ensure candidate responses **covers** the specific model candidates you plan to deploy.
- For benchmarks such as MT-Bench/Chatbot Arena, a wide range of models are selected to produce responses with the goal of comparing all models, which may not be necessary for you.

#### • Annotation:

- Quality is critical
- Human annotation (pay attention to inter-rater agreement)
- Use powerful models cautiously (to avoid self-promotion bias).

## AutoRater – Model Fine-tuning

#### **Representative Models**

| Model                                       | Base Model                                       | Туре           | Training data                                                                                                                       | Training Method                                                                                          |
|---------------------------------------------|--------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| FLAMe-24B                                   | PaLM-2-24B (IT)                                  | generative     | 100+ quality assessment tasks<br>comprising 5M+ human judgments                                                                     | Text-to-text multitask SFT                                                                               |
| <u>FLAMe-RM-24B;</u><br><u>FLAMe-Opt-RM</u> | PaLM-2-24B (IT)                                  | discriminative | HelpSteer, PRM800K, CommitPack,<br>HH Harmlessness (covering chat,<br>reasoning and safety)                                         | Fine-tuning with pairwise preference data<br>Tail-patch fine-tuning to optimize multitask<br>mixture     |
| Skywork-Reward                              | Gemma-2-27b-it;<br>Llama-3.1-8B                  | discriminative | Skywork-Reward-Preference-80K-v<br>0.1 (HelpSteer2, OffsetBias,<br>WildGuard, Magpie DPO series,<br>In-house human annotation data) | BT-based pair-wise ranking loss with a few variants and careful curation and filtering of training data. |
| <u>Skywork-Critic</u>                       | Llama-3.1-8B-Instruct;<br>Llama-3.1-70B-Instruct | generative     | Skywork-Reward-Preference-80K-v<br>0.1                                                                                              | instruction-tuning focusing on pairwise preference evaluation and general chat tasks.                    |
| Nemotron-Reward                             | Llama-3.1-70B-Instruct;<br>Nemotron-4-340B       | discriminative | HelpSteer2                                                                                                                          | Linear layer converts the final layer of the end<br>token into 5 scalar values, train with MSE loss      |
| PROMETHEUS 2                                | Mistral 7B & 8x7B                                | discriminative | <u>PREFERENCE COLLECTION</u> (1K<br>score rubrics, 20K instructions &<br>reference answers, 200K responses<br>pairs & feedback )    | SFT<br>Joint point-wise and pair-wise training with<br>weight merging to produce final model             |
| InstructScore                               | Llama-2-7B                                       | generative     | 10k raw from 100 domains                                                                                                            | Multitask SFT over reference output and oogle diagnostic report                                          |

# AutoRater – Limitation and Mitigation

#### Biases

- Position bias (favor certain position)
- Verbosity/Length bias (favor longer responses)
- Self-enhancement/EGOCENTRIC bias (prefer self-generated answers)

#### Lack of consistency

- Prompt sensitivity
- Randomness in autorater output

#### Mitigation

- Prompt engineering and orchestration
  - Swapping Positions: call the AutoRater LLM twice with the order of options reversed to reduce position bias
  - Self-consistency: call the AutoRater LLM multiple times, analyze the multiple outputs generated and determine a consensus result
  - Panel of Diverse Models: use a LLM jury panel composed of disjoint model families.
  - In-context Learning: Providing a few demonstration examples of good judgments.
- Fine-tuning
  - Fine-tuning model via de-biasing dataset.

[Ref: <u>MT-Bench (Zheng 2023)</u>, <u>OffsetBias (Park 2024)</u>, <u>CoBBLEr (Koo 2024)</u>, <u>Juries (Verga 2024)</u>, <u>Length-Controlled AlpacaEval (Dubois 2024)</u>, <u>Position Bias (Shi 2024)</u>]

## Summary

Three Approaches to LLM Evaluation

- Computation
- Human
- AutoRater

Support Your Application and Task

- Choose
  - trade off between cost and quality
  - Work complementary depending on use cases

#### • Customize

- Prompt engineering
- Fine-tuning
- Calibrate (Meta Evaluation)
  - Stay truthful to your business needs
  - Fit to your domain and criteria
  - Avoid Bias

02

# Hands-on Experience

Colab link to be posted on the google dev website

### 03

# **Safety Evaluation**

Colab link to be posted on the google dev website



