

school of Artificial Intelligence

MultiNet: Adaptive Multi-Viewed Subgraph Convolutional Networks for Graph Classification

Xinya Qin, Lu Bai, Lixin Cui, Ming Li,

Hangyuan Du, Edwin R. Hancock

XinyaQin@mail.bnu.edu.cn, bailu@bnu.edu.cn

Speaker: Xinya Qin Affiliation: School of Artificial Intelligence, Beijing Normal University

MultiNet: Adaptive Multi-Viewed Subgraph Convolutional Networks for Graph Classification

- Motivation
- Contributions
- Methodology
- Experimental Results

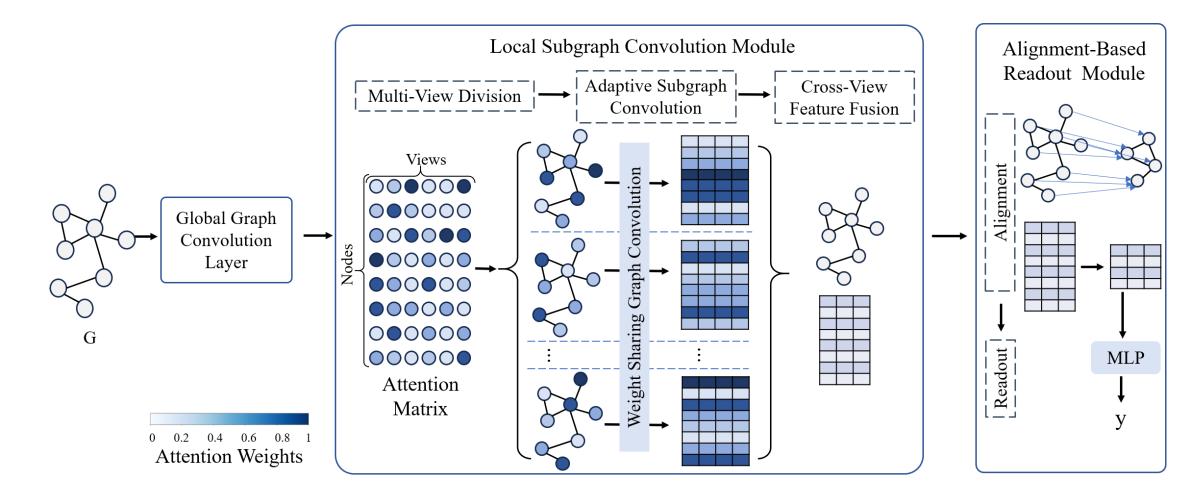
Motivation

- Over-smoothing in GCNs \rightarrow node representations become indistinguishable.
- New observation: graph-level over-smoothing.
 - Node representations become indistinguishable.
 - Global readouts like sum or mean ignore local structure differences.
- Preserve local discriminative information and generate more distinct graph-level representations.

Contributions

- Adaptive Multi-Viewed Subgraph Convolutional Networks (MultiNet)
 - Local Subgraph Convolution:
 - Adaptively divides graphs into multiple views to capture discriminative local structures.
 - Alignment-Based Readout:
 - Establishes consistent cluster-level correspondences to preserve structural information.
 - Theoretical & Empirical Validation:
 - Formally defines and validates the mitigation of graph-level over-smoothing.

Adaptive Multi-Viewed Subgraph Convolutional Networks (MultiNet)



Local Subgraph Convolution Module

Multi-Viewed Subgraph Division:

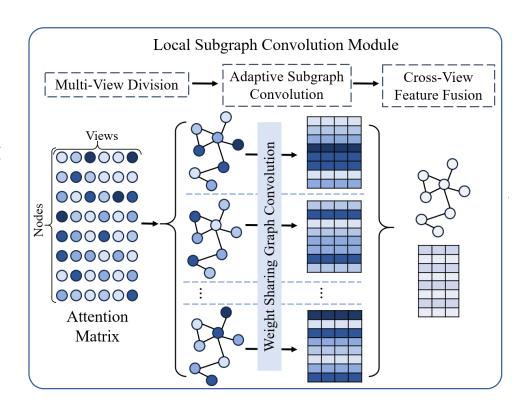
$$P = \operatorname{softmax}(\tilde{A}X^{(0)}W_P),$$

Adaptive Subgraph Convolution Operation:

$$X_j^{(l+1)} = \sigma\left((\tilde{A}X_j^{(l)}) \odot P_j W^{(l)}\right)$$

Cross-Viewed Feature Fusion

$$X^{(L)} = \text{MLP}([X_1^{(L)} \parallel X_2^{(L)} \parallel \cdots \parallel X_m^{(L)}])$$



Alignment-based Readout

• Learn a shared cluster assignment:

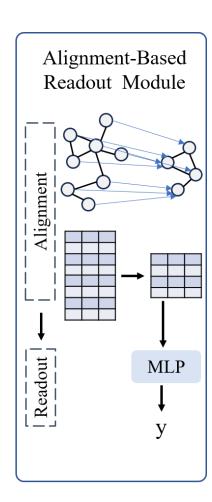
$$S = softmax(\tilde{A}X^{(L)}W_S)$$

Align the node features:

$$\tilde{X} = S^{\top} X^{(L)}$$

Apply an MLP for expressive readout:

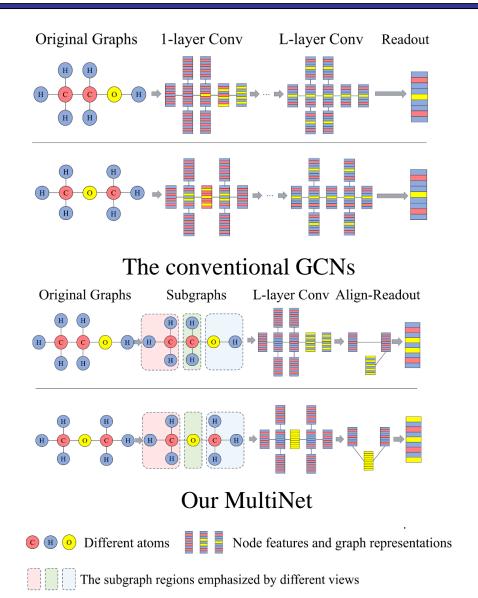
$$y = \mathrm{MLP}(\tilde{X})$$



- Theoretical Analysis
 - Constrained propagation
 - view-specific propagation kernel

$$\tilde{A}_j = \operatorname{diag}(P_j) \, \tilde{A} \, \operatorname{diag}(P_j)$$

- Spectral radius $\rho(\tilde{A}_j) < \rho(\tilde{A}) = 1$
 - limits diffusion, prevents convergence to the dominant eigenvector
 - → mitigates over-smoothing.



Experimental Results

Experiments on Graph Classification

Table 1: Classification accuracy (In $\% \pm$ standard error) on benchmark datasets.

Method	MUTAG	PTC_MR	ENZYMES	PROTEINS	DD	IMDB-B	IMDB-M	Rank
DGCNN	84.0 ± 6.7	58.3 ± 7.0	38.9 ± 5.7	72.9 ± 3.5	76.6 ± 4.3	69.2 ± 3.0	45.6 ± 3.4	12.40
DiffPool	79.8 ± 7.1	60.8 ± 7.0	59.5 ± 5.6	73.7 ± 3.5	75.0 ± 3.5	68.4 ± 3.3	45.6 ± 3.4	10.80
ECC	75.4 ± 6.2	55.7 ± 3.3	29.5 ± 8.2	72.3 ± 3.4	72.69 ± 4.1	67.7 ± 2.8	43.5 ± 3.1	15.60
GIN	84.7 ± 6.7	$58.8 {\pm} 5.5$	$59.6 {\pm} 4.5$	73.3 ± 4.0	75.3 ± 2.9	71.2 ± 3.9	48.5 ± 3.3	7.40
GraphSAGE	83.6 ± 9.6	60.1 ± 4.7	58.2 ± 6.0	73.0 ± 4.5	72.9 ± 2.0	$68.8 {\pm} 4.5$	47.6 ± 3.5	10.80
DGK	82.66 ± 1.45	57.32 ± 1.13	53.4 ± 0.9	71.68 ± 0.50	78.50 ± 0.22	66.96 ± 0.56	44.55 ± 0.52	10.57
1-RWNN	89.2 ± 4.3		56.7 ± 5.2	74.7 ± 3.3	77.6 ± 4.7	70.8 ± 4.8	47.8 ± 3.8	6.33
2-RWNN	88.1 ± 4.8		57.4 ± 4.9	74.1 ± 2.8	76.9 ± 4.6	70.6 ± 4.4	48.8 ± 2.9	7.16
3-RWNN	88.6 ± 4.1		57.6 ± 6.3	74.3 ± 3.3	77.4 ± 4.9	70.7 ± 3.9	47.8 ± 3.5	6.50
GKNN-WL	85.73 ± 2.70	59.29 ± 2.54		74.94 ± 1.10		69.70 ± 2.20	47.87 ± 1.78	7.00
GKNN-GL	85.24 ± 2.28	60.13 ± 1.94		75.36 ± 1.12	_	69.90 ± 2.20	45.67 ± 1.22	7.40
RWGK	80.77 ± 0.72	55.91 ± 0.37	22.37 ± 0.35	74.20 ± 0.40	71.70 ± 0.47	67.94 ± 0.77	46.72 ± 0.30	13.14
SPGK	83.38 ± 0.31	56.55 ± 0.53	29.00 ± 0.48	75.10 ± 0.50	78.45 ± 0.26	71.26 ± 1.04	51.33 ± 0.57	6.71
GK	81.66 ± 0.11		24.87 ± 0.22	71.67 ± 0.55	78.45 ± 0.26	65.87 ± 0.98	45.42 ± 0.87	14.17
WLSK	82.88 ± 0.57	56.05 ± 0.51	52.75 ± 0.44	73.52 ± 0.43	79.78 ± 0.36	71.88 ± 0.77	49.50 ± 0.49	7.14
JTQK	85.50 ± 0.55	57.39 ± 0.46	56.41 ± 0.42	72.86 ± 0.41	79.49 ± 0.32	72.45 ± 0.81	50.33 ± 0.49	6.00
ASK	87.50 ± 0.65				70.38 ± 0.22		50.12 ± 0.51	9.33
EDBMK	86.35	56.75	36.85	_	78.19	_	_	8.25
QBMK	88.55 ± 0.43	59.38 ± 0.36		_	77.60 ± 0.47	_	_	5.00
MultiNet	89.81 \pm 1.46	62.65 ± 0.88	54.83 ± 1.55	76.40 ± 0.87	78.90 ± 0.51	76.49 ± 0.60	51.93 ± 0.25	2.28

Experimental Results

- Evaluations on Mitigating the Over-Smoothing
 - Average Cosine Distance (AD): $\mu(H) = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left(1 \frac{H_i^{\top} H_j}{\|H_i\| \|H_j\|} \right)$

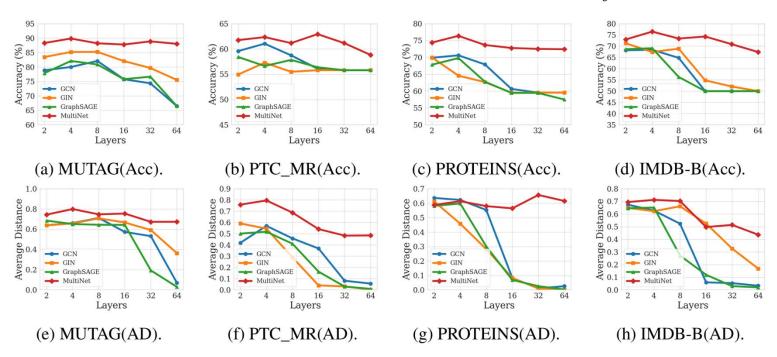


Figure 4: Classification accuracies (%) and the AD values on the four datasets.

School of Artificial Intelligence

Thanks For Your Listening

Contact us at: XinyaQin@mail.bnu.edu.cn, bailu@bnu.edu.cn,

