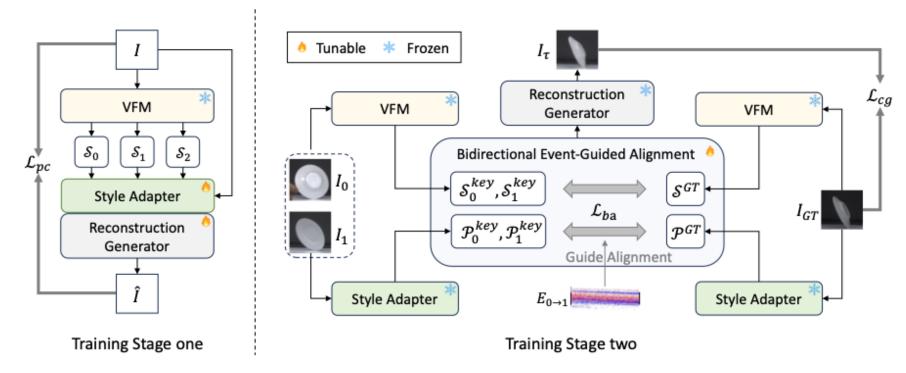
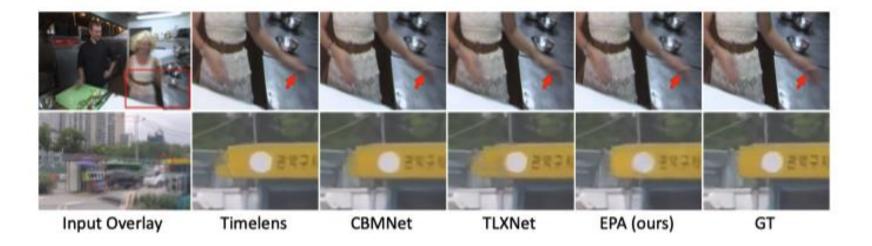

EPA: Boosting Event-based Video Frame Interpolation with Perceptually Aligned Learning

Problems:

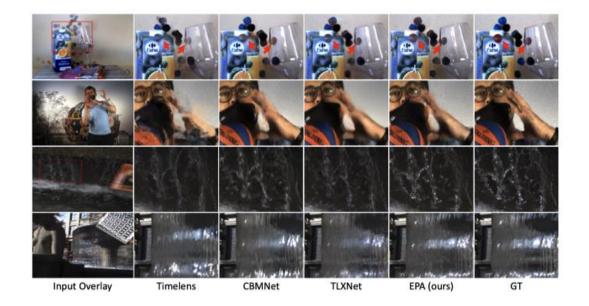
- Existing Event-based Video Frame Interpolation (E-VFI) methods are severely limited by **motion blur and image** degradation commonly found in both the input keyframes and the ground truth supervision signals.
- > Traditional approaches rely on **pixel-level supervision**, which forces the model to learn and amplify these visual artifacts, leading to perceptually unrealistic results and **poor generalization** to diverse, real-world scenes.


The Core Challenge:

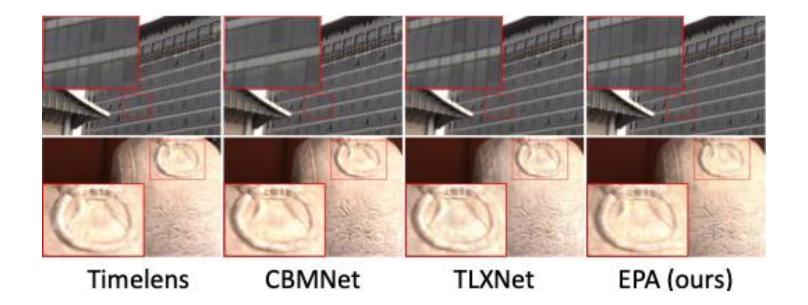
How can we effectively learn from degraded data without propagating these flaws into the final interpolated frames, thereby achieving higher perceptual quality?

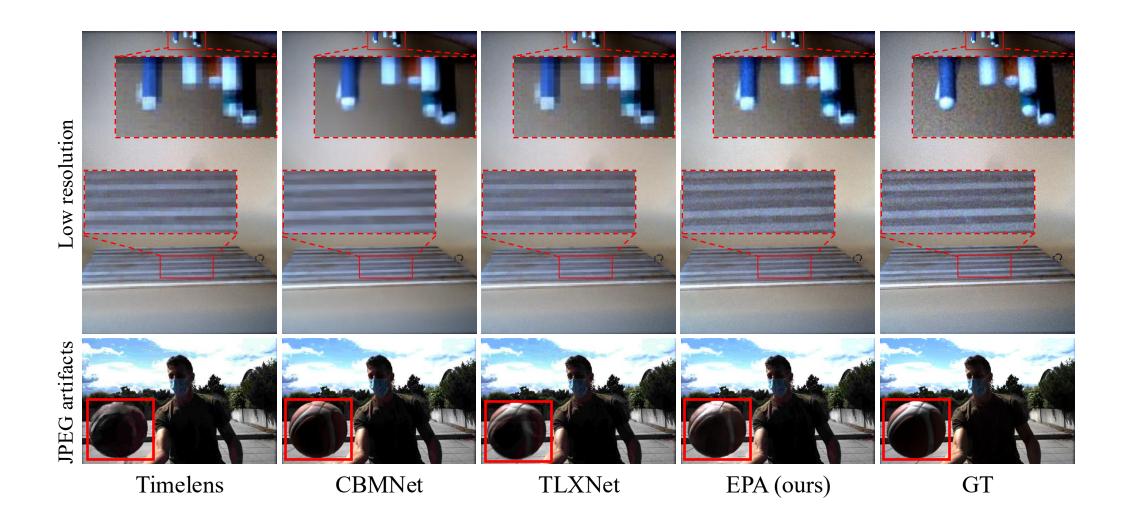

We propose a novel framework, **EPA**, which shifts the learning paradigm from the unstable pixel space to a **degradation-insensitive** semantic-perceptual feature space. Our method consists of two core stages:

- ➤ Robust Feature Extraction & Reconstruction: We leverage a powerful Vision Foundation Model (VFM) to extract robust semantic features that are insensitive to degradation. A custom Style Adapter complements these features with low-level details, ensuring they can be reconstructed into high-fidelity images.
- ➤ Bidirectional Event-Guided Alignment (BEGA): We introduce a novel BEGA module that uses the high temporal resolution of event streams as precise motion guidance to align and fuse perceptual features from the keyframes at the feature level.


Experiment (Synthetic Dataset)

Methods	Vimeo90k 1 skip			GOPRO						
				7 skip			15 skip			
	LPIPS\	FloLPIPS↓	DISTS↓	LPIPS↓	FloLIPIS↓	DISTS\	LPIPS↓	FloLIPIS↓	DISTS↓	
RIFE	0.021	0.062	0.048	0.029	0.100	0.060	0.051	0.168	0.082	
UPR-Net	0.015	0.039	0.037	0.024	0.077	0.052	0.042	0.140	0.067	
Timelens	0.022	0.040	0.052	0.009	0.033	0.031	0.012	0.047	0.036	
CBMNet	0.012	0.021	0.039	0.012	0.050	0.046	0.013	0.058	0.050	
TLXNet	0.089	0.142	0.116	0.028	0.052	0.049	0.031	0.063	0.053	
EPA (ours)	0.007	0.012	0.036	0.006	0.021	0.019	0.008	0.031	0.023	


Experiment (Real Dataset)


	HS-ERGB										
Method	2	5 ski	p		7 skip						
	PSNR↑	SSIM↑	LPIPS\	FloLPIPS \	DISTS\	PSNR↑	SSIM↑	LPIPS\	FloLPIPS \	DISTS↓	
RIFE	32.624	0.857	0.032	0.192	0.083	31.150	0.836	0.037	0.212	0.092	
UPR-Net	32.235	0.857	0.075	0.170	0.075	30.689	0.834	0.085	0.188	0.081	
Timelens	32.760	0.861	0.046	0.112	0.059	31.871	0.851	0.053	0.126	0.065	
CBMNet	32.206	0.842	0.098	0.212	0.108	31.876	0.837	0.101	0.218	0.110	
TLXNet	-	-	-	-	-	31.578	0.827	0.046	0.105	0.054	
EPA (ours)	33.842	0.872	0.014	0.057	0.045	33.402	0.867	0.015	0.062	0.048	
	BS-ERGB										
	1 skip				3 skip						
RIFE	25.616	0.765	0.098	0.310	0.067	23.435	0.728	0.114	0.357	0.073	
UPR-Net	25.621	0.779	0.104	0.308	0.083	23.081	0.736	0.108	0.335	0.082	
Timelens	27.164	0.783	0.052	0.153	0.065	25.855	0.765	0.064	0.202	0.075	
CBMNet	29.257	0.814	0.060	0.203	0.087	28.446	0.807	0.063	0.221	0.090	
TLXNet	29.298	0.813	0.047	0.088	0.052	28.720	0.807	0.046	0.090	0.058	
EPA (ours)	27.943	0.791	0.024	0.068	0.051	27.221	0.782	0.028	0.082	0.057	

Experiment (Real Dataset)

Method	Buil	ding	Sculpture		
Method	PSNR↑	LPIPS↓	PSNR↑	LPIPS↓	
Timelens	31.78	0.037	36.52	0.020	
CBMNet	31.42	0.054	34.79	0.052	
TLXNet	29.07	0.035	33.85	0.026	
EPA (ours)	<u>31.43</u>	0.015	<u>35.15</u>	0.011	

Conclusion

- We introduced EPA, a novel E-VFI framework that tackles the critical issue of input degradation by learning in a robust perceptual feature space.
- Our proposed BEGA module effectively leverages event data to guide feature alignment, achieving more robust and higher-quality interpolation.