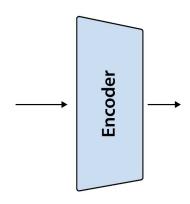
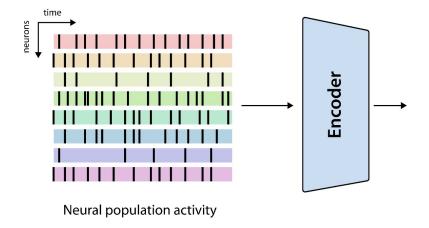
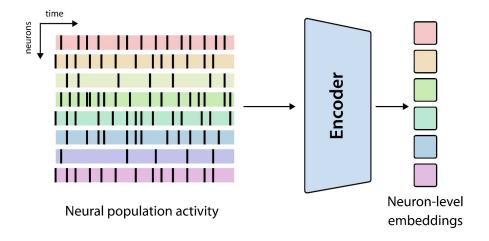

Know Thyself by Knowing Others: Learning Neuron Identity from Population Context (NuCLR)

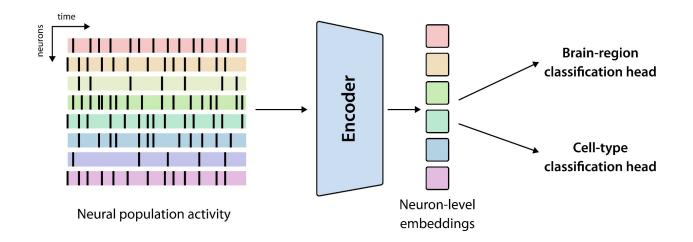
Authors:

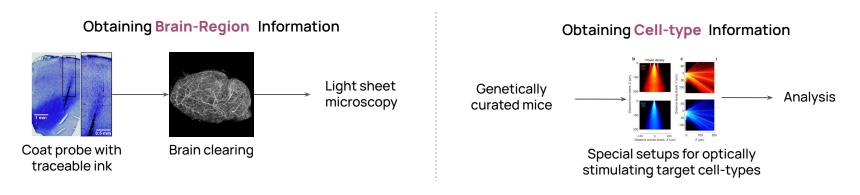
Vinam Arora¹, Divyansha Lachi¹, Ian J. Knight¹, Mehdi Azabou², Blake A. Richards³, Cole L. Hurwitz², Josh H. Siegle⁴, Eva L. Dyer¹







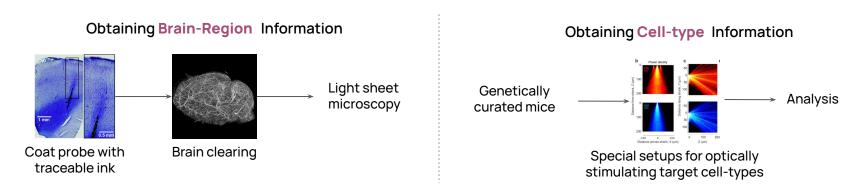



Motivation

Neuroscientists can do more science when they know which *kind* of neurons they recorded.

Motivation

Neuroscientists can do more science when they know which *kind* of neurons they recorded.


Experimental methods are not scalable

Motivation

Neuroscientists can do more science when they know which *kind* of neurons they recorded.

Experimental methods are not scalable

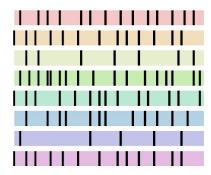
Core Design Principles

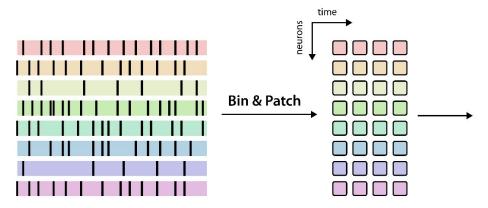
Core Design Principles

1. Model interactions within the population

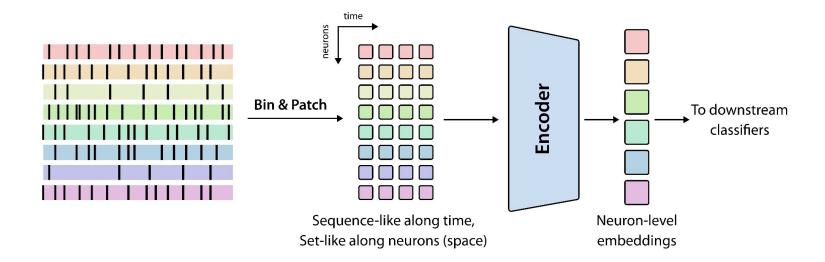
Cell-types express themselves in their neighborhood.

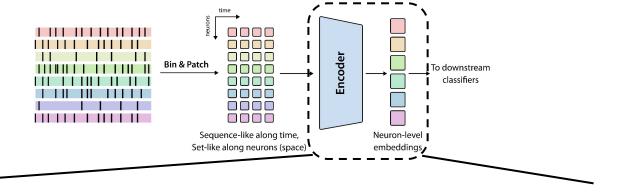
Neurons from the same brain-region have more correlated activity.

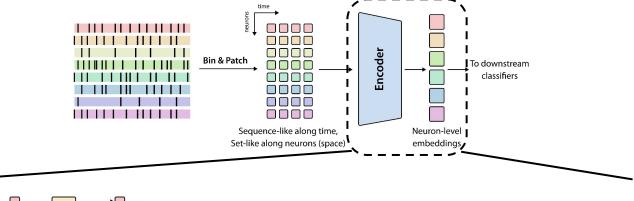

Core Design Principles

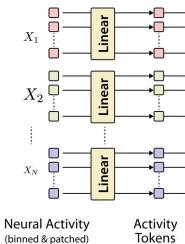

1. Model interactions within the population

Cell-types express themselves in their neighborhood. Neurons from the same brain-region have more correlated activity.

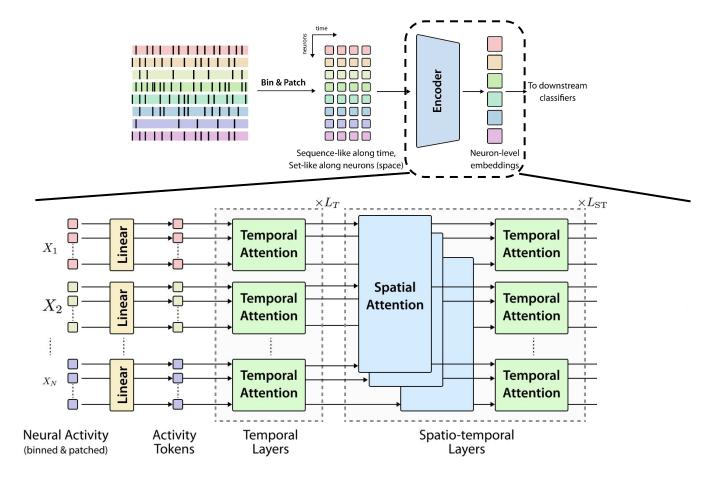

2. Neuron identity is constant

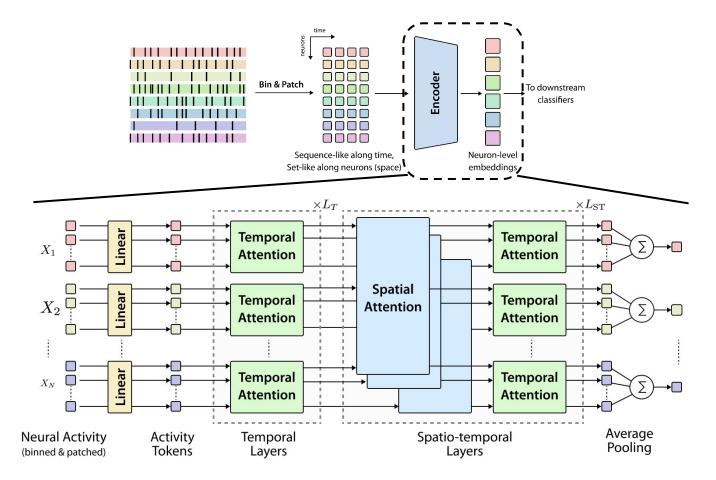

A neuron's properties remain stable across time and stimuli.

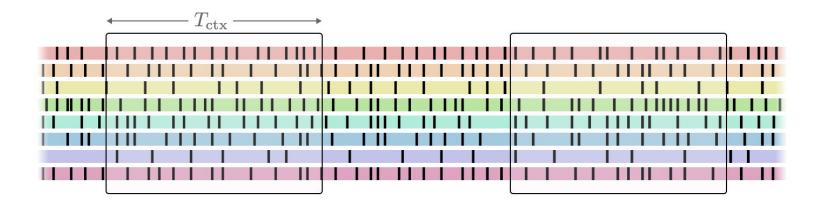


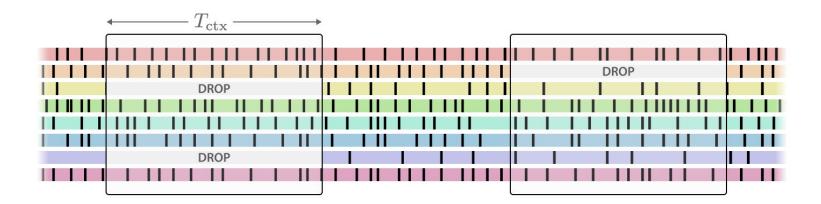


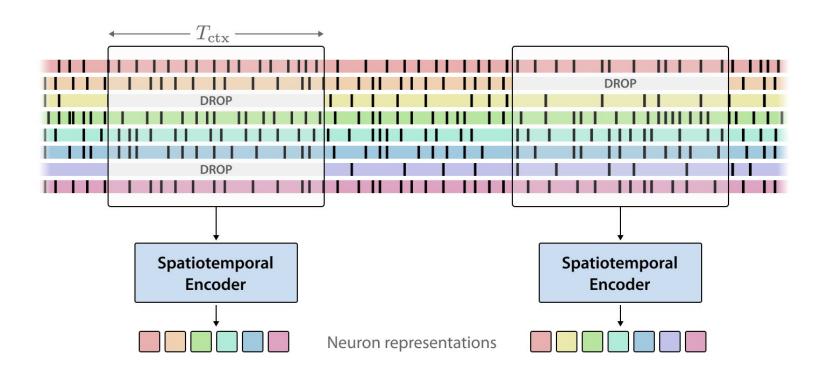

Sequence-like along time, Set-like along neurons (space)

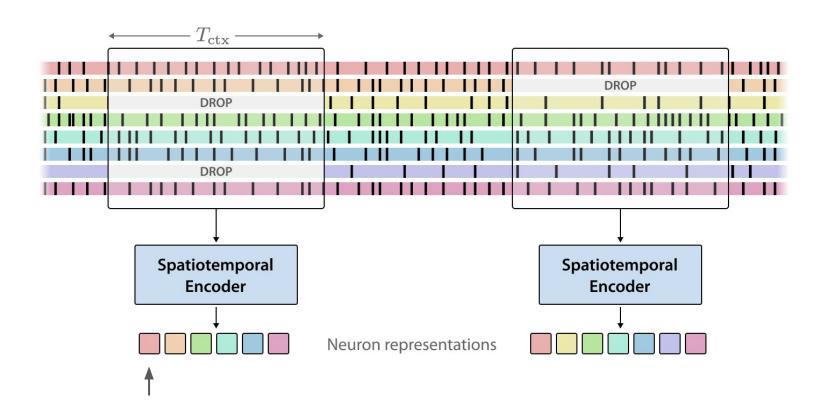


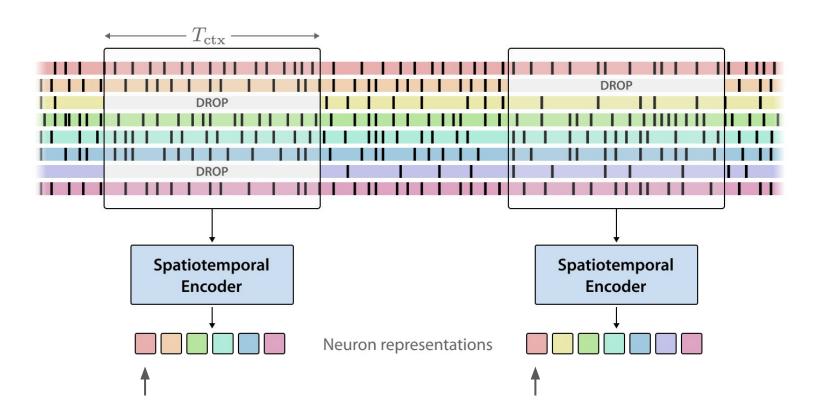


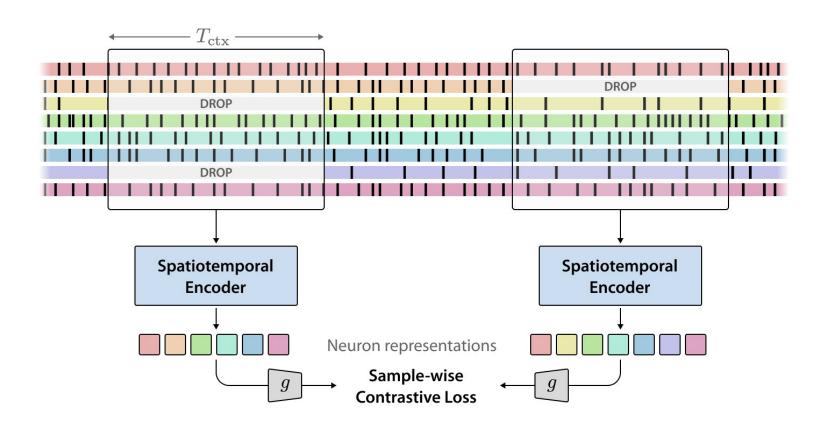


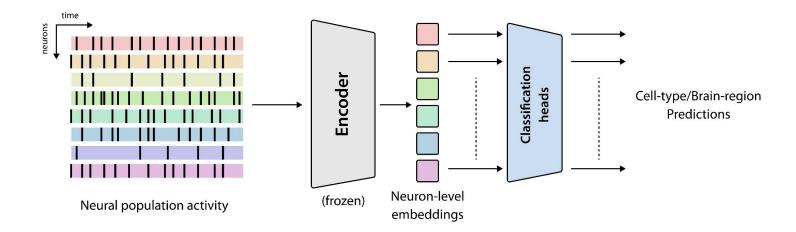












Downstream Tasks

Encoder is frozen, and a classification head (usually Linear) is trained on top of the embeddings.

NuCLR achieves SoTA prediction

Cell-Type Prediction

Δ wrt best baseline

Neuropixels

Ca²⁺

Dataset	# Classes	Setting	NuCLR	NeuPRINT	NEMO	LOLCAT
Allen VC	3	Transductive zero-shot Inductive zero-shot	$\begin{array}{c} 0.7218 \pm 0.0113 \\ 0.7200 \pm 0.0267 \end{array}$	0.3999 ± 0.0312 N/A	$\begin{array}{c} 0.4256 \pm 0.0114 \\ 0.4194 \pm 0.0099 \end{array}$	$N/A = 0.4121 \pm 0.0800$
tugeon et. al. (E vs. I)	2	Transductive Transductive zero-shot Inductive zero-shot	$\begin{array}{c} 0.8080 \pm 0.0007 \\ 0.6979 \pm 0.0368 \\ 0.7009 \pm 0.0269 \end{array}$	$0.6702 \pm 0.0004 \\ 0.6424 \pm 0.0031 \\ \text{N/A}$	N/A N/A N/A	$\begin{array}{c} 0.7205 \pm 0.0127 \\ N/A \\ 0.7463 \pm 0.0095 \end{array}$
ageon et. al. (Subclass)	5	Transductive Transductive zero-shot Inductive zero-shot	0.6088 ± 0.0307 0.3890 ± 0.0144 0.4440 ± 0.0495	$0.4949 \pm 0.0260 \\ 0.3385 \pm 0.0221 \\ \text{N/A}$	N/A N/A N/A	$0.2900 \pm 0.0388 \\ N/A \\ 0.2418 \pm 0.0078$

Brain-Region Prediction

Δ wrt best baseline

Dataset	# Classes	Setting	NuCLR	NeuPRINT	NEMO	LOLCAT
BL	10	Transductive Transductive zero-shot Inductive zero-shot	$\begin{array}{c} 0.6686 \pm 0.0034 \\ 0.5343 \pm 0.0115 \\ 0.5295 \pm 0.0040 \end{array}$	$0.2684 \pm 0.0285 \\ 0.2464 \pm 0.0240 \\ \text{N/A}$	$\begin{array}{c} 0.4188 \pm 0.0041 \\ 0.3804 \pm 0.0011 \\ 0.3793 \pm 0.0011 \end{array}$	$\begin{array}{c} 0.2851 \pm 0.0008 \\ N/A \\ 0.2532 \pm 0.0016 \end{array}$
teinmetz et. al.	5	Transductive Transductive zero-shot Inductive zero-shot	$\begin{array}{c} 0.9594 \pm 0.0027 \\ 0.7338 \pm 0.0226 \\ 0.5810 \pm 0.0110 \end{array}$	$0.4315 \pm 0.0139 \\ 0.3832 \pm 0.0378 \\ \text{N/A}$	$\begin{array}{c} 0.6989 \pm 0.0044 \\ 0.6681 \pm 0.0016 \\ 0.5595 \pm 0.0048 \end{array}$	$0.3205 \pm 0.0055 \\ N/A \\ 0.3191 \pm 0.0311$

Neuropixels

NuCLR achieves SoTA prediction

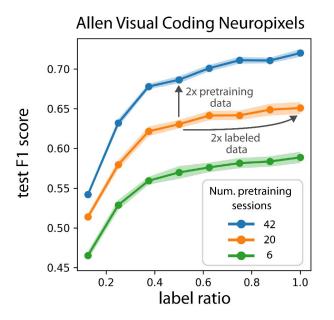
Cell-Type Prediction

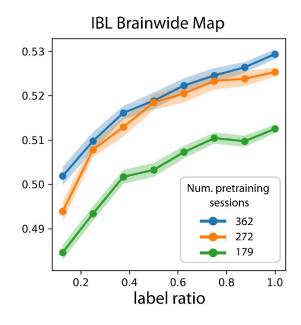
Δ wrt best baseline

Neuropixels

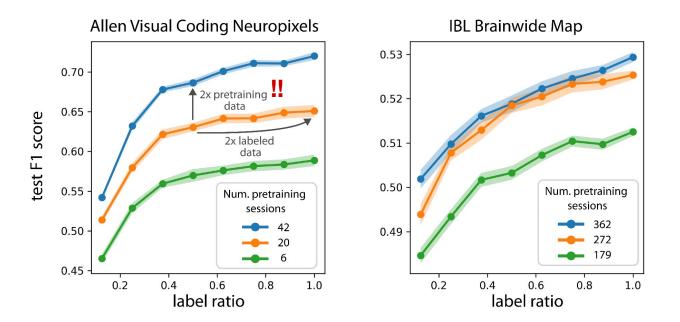
Ca²⁺

Dataset	# Classes	Setting	NuCLR	NeuPRINT	NEMO	LOLCAT
Allen VC	3	Transductive zero-shot Inductive zero-shot	$\begin{array}{c} 0.7218 \pm 0.0113 \\ 0.7200 \pm 0.0267 \end{array}$	0.3999 ± 0.0312 N/A	$\begin{array}{c} 0.4256 \pm 0.0114 \\ 0.4194 \pm 0.0099 \end{array}$	$N/A = 0.4121 \pm 0.0800$
geon et. al. (E vs. I)	2	Transductive Transductive zero-shot Inductive zero-shot	$\begin{array}{c} 0.8080 \pm 0.0007 \\ 0.6979 \pm 0.0368 \\ 0.7009 \pm 0.0269 \end{array}$	$0.6702 \pm 0.0004 \\ 0.6424 \pm 0.0031 \\ \text{N/A}$	N/A N/A N/A	$\begin{array}{c} 0.7205 \pm 0.0127 \\ N/A \\ 0.7463 \pm 0.0095 \end{array}$
geon et. al. (Subclass)	5	Transductive Transductive zero-shot Inductive zero-shot	0.6088 ± 0.0307 0.3890 ± 0.0144 0.4440 ± 0.0495	$0.4949 \pm 0.0260 \\ 0.3385 \pm 0.0221 \\ \text{N/A}$	N/A N/A N/A	$0.2900 \pm 0.0388 \\ N/A \\ 0.2418 \pm 0.0078$


Brain-Region Prediction


Δ wrt best baseline

Dataset	# Classes	Setting	NuCLR	NeuPRINT	NEMO	LOLCAT
BL	10	Transductive Transductive zero-shot Inductive zero-shot	$\begin{array}{c} 0.6686 \pm 0.0034 \\ 0.5343 \pm 0.0115 \\ 0.5295 \pm 0.0040 \end{array}$	$0.2684 \pm 0.0285 \\ 0.2464 \pm 0.0240 \\ \text{N/A}$	$\begin{array}{c} 0.4188 \pm 0.0041 \\ 0.3804 \pm 0.0011 \\ 0.3793 \pm 0.0011 \end{array}$	$\begin{array}{c} 0.2851 \pm 0.0008 \\ N/A \\ 0.2532 \pm 0.0016 \end{array}$
Steinmetz et. al.	5	Transductive Transductive zero-shot Inductive zero-shot	$\begin{array}{c} 0.9594 \pm 0.0027 \\ 0.7338 \pm 0.0226 \\ 0.5810 \pm 0.0110 \end{array}$	$0.4315 \pm 0.0139 \\ 0.3832 \pm 0.0378 \\ \text{N/A}$	$\begin{array}{c} 0.6989 \pm 0.0044 \\ 0.6681 \pm 0.0016 \\ 0.5595 \pm 0.0048 \end{array}$	$0.3205 \pm 0.0055 \\ N/A \\ 0.3191 \pm 0.0311$


Neuropixels

NuCLR scales with pretraining data size

NuCLR scales with pretraining data size

In some situations, it can be more effective to collect more unlabelled (pre-training) data than increasing the number of tagged neurons.

Conclusions

- Analyzing just neural activity can take you pretty far.
- Population context is quite important.
- NuCLR is a promising and scalable approach for learning neuron representations.

Thank you!

More about me: https://vinam.dev

Feel free to reach out at: vinam@seas.upenn.edu