

Nilesh Gupta, Chong You, Srinadh Bhojanapalli, Sanjiv Kumar, Inderjit Dhillon & Felix Yu

Project Link

Agenda

- 01 IR in the age of LLMs
- 02 ICR Attention Analysis
- 03 BlockRank scalable ICR
- 04 Future Directions

Agenda

01 IR in the age of LLMs

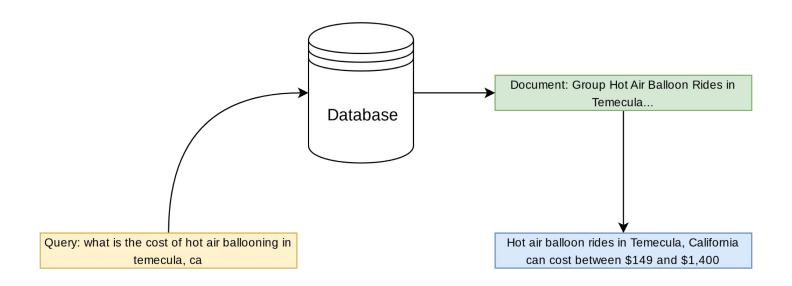
02 ICR Attention Analysis

03 BlockRank - scalable ICR

04 Future Directions

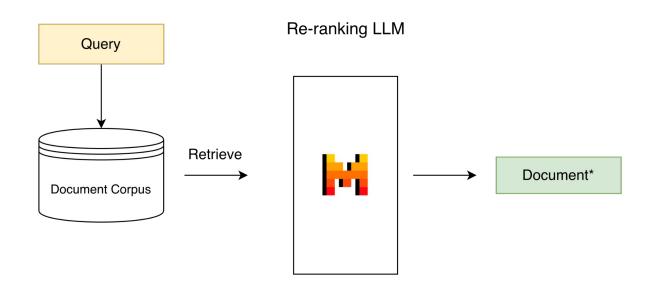
Information Retrieval (IR)

Seeking answer for a query from a database



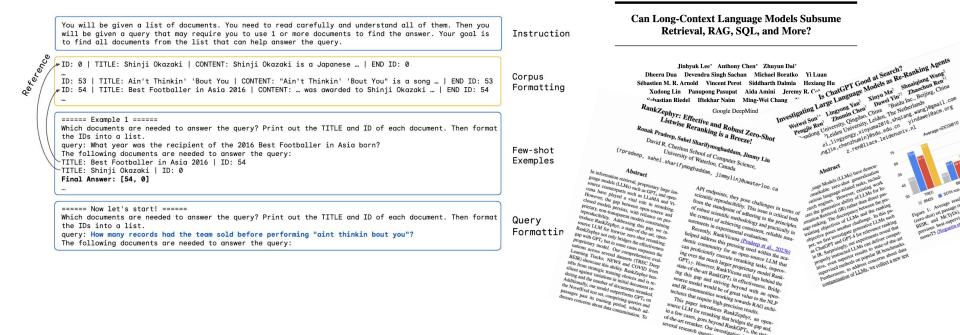
Typical IR Pipeline

Retrieve (embedding based) then Rerank (strong language model)



Role of LLMs in IR

LLMs have proven to be strong re-rankers especially as in-context listwise ranker



Challenges

===== Now let's start! =====

The following documents are needed to answer the query:

the IDs into a list.

to find all documents from the list that can help answer the query. FID: 0 | TITLE: Shinji Okazaki | CONTENT: Shinji Okazaki is a Japanese ... | END ID: 0 Corpus ID: 53 | TITLE: Ain't Thinkin' 'Bout You | CONTENT: "Ain't Thinkin' 'Bout You" is a song ... | END ID: 53 ID: 54 | TITLE: Best Footballer in Asia 2016 | CONTENT: ... was awarded to Shinji Okazaki ... | END ID: 54 | Formatting ===== Example 1 ===== Which documents are needed to answer the query? Print out the TITLE and ID of each document. Then format the IDs into a list. query: What year was the recipient of the 2016 Best Footballer in Asia born? Few-shot The following documents are needed to answer the query: Exemples TITLE: Best Footballer in Asia 2016 | ID: 54 TITLE: Shinji Okazaki | ID: 0 Final Answer: [54, 0]

Instruction

Query

Formatting

You will be given a list of documents. You need to read carefully and understand all of them. Then you

will be given a query that may require you to use 1 or more documents to find the answer. Your goal is

Which documents are needed to answer the query? Print out the TITLE and ID of each document. Then format

query: How many records had the team sold before performing "aint thinkin bout you"?

Inefficient with ranking list size
O(N²) attention

 Positional bias of in-context documents - lost in the middle!

 Interpretability - does the model retrieve the right information?

BlockRank

Can we use the special structure in an ICR task for efficient training and inference

Agenda

01 IR in the age of LLMs

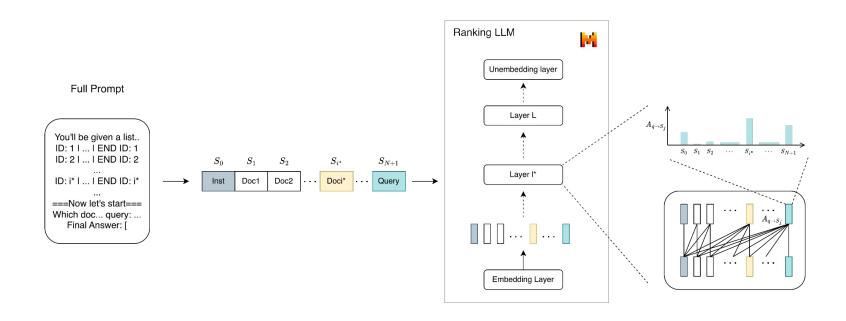
02 ICR Attention Analysis

03 BlockRank - scalable ICR

04 Future Directions

Analysis Setup

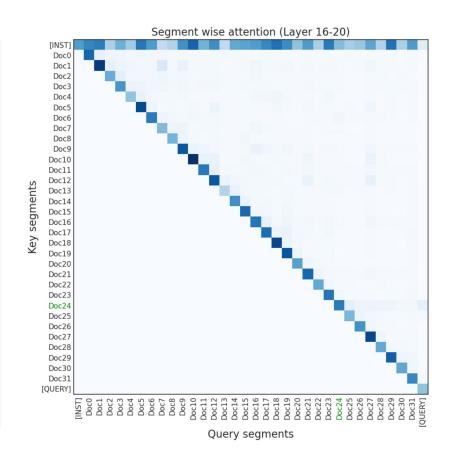
We analyze blockwise attention patterns inside a ranking LLM performing ICR



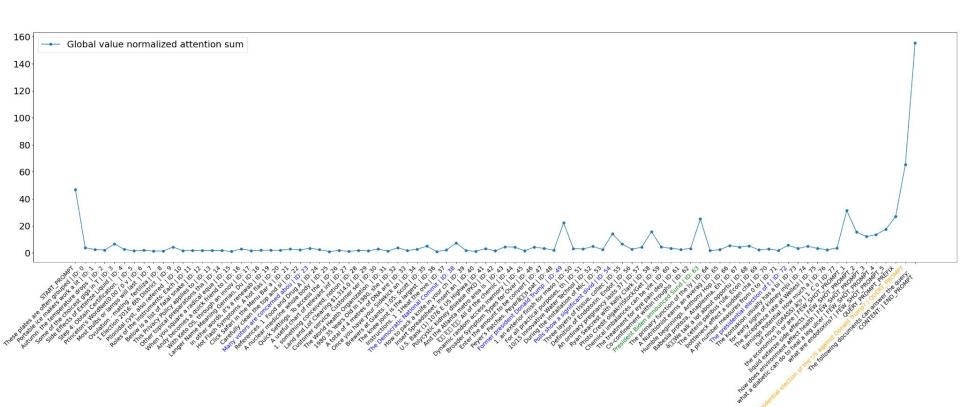
Inter-document Block Sparsity

Attention has structured sparsity

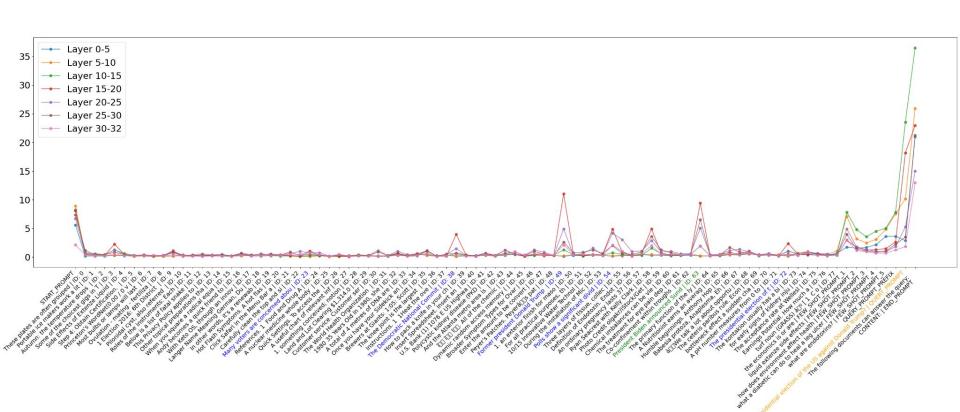
 Documents tend to attend to themself and instruction



Query-document Block Relevance



Query-document Block Relevance



Query-document Block Relevance

 Certain tokens (":", "[") have strong correlation between attention concentration and relevance

 With SFT on ICR data this correlation improves significantly

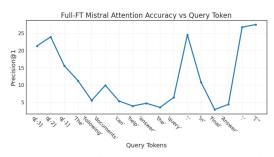


Figure 5 | Performance of Full-FT model's attention-based inference vs the query token for which attention scores are extracted from.

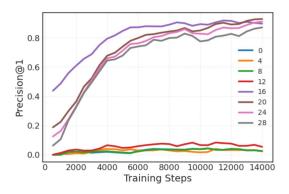


Figure 7 | Layerwise Attention Precision@1 on a held-out subset of MSMarco training data vs training steps for Full-FT model

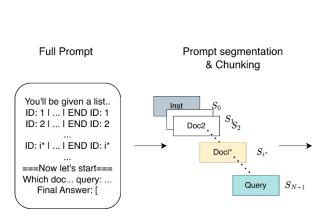
Agenda

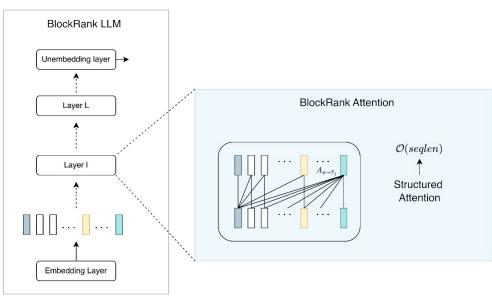
- 02 ICR Attention Analysis
- 03 BlockRank scalable ICR

04 Future Directions

Attention Architecture

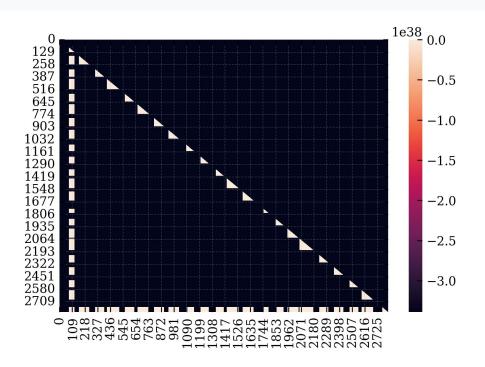
Enforce Inter-document sparsity - doc blocks only attend to self + instruction block





Attention Architecture

Resulting effective attention mask ~ triangular boundary



Permutation-invariant Position Encoding

"lost-in-the-middle" problem in ICR

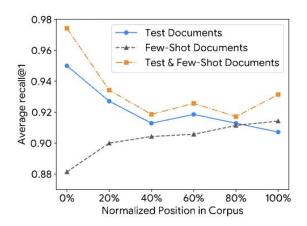
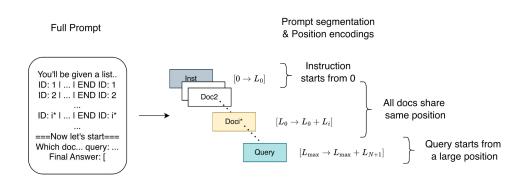


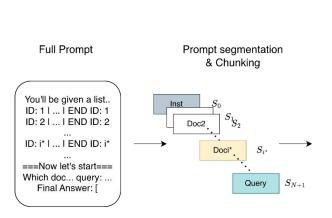
Figure 4: **Positional Analysis**. We vary gold document positions of queries within the corpus (0% = beginning, 100% = end).

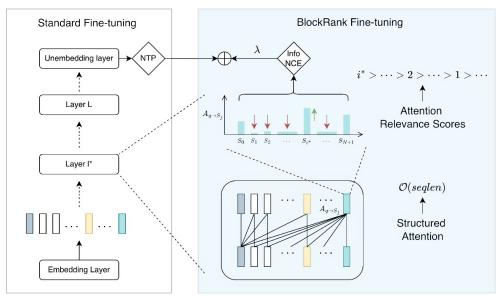
BlockRank allows/employs permutation invariant position encodings



Loss

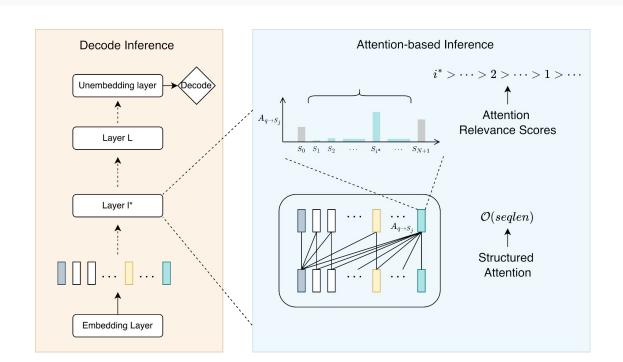
Explicitly optimize query-document block attention using a contrastive loss





Inference

Two modes of inference: (1) decode answer; (2) measure attention concentration



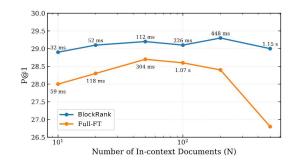
Results on BEIR

BlockRank achieves strong results while being much efficient and scalable

Table 1 | nDCG@10 on BEIR benchmark, all re-ranker rank top-100 documents retrieved from Contriever retrieval model. **Bold** indicates the best numbers.

Reranker	Train Data	Avg.	Climate- FEVER	DB- Pedia	FEVER	FiQA	Hotpot QA	MS Marco	NF- Corpus	NQ	Sci- docs	Sci- fact	Trec- COVID
None (Contriever)	MS Marco	45.9	23.7	41.3	75.8	32.9	63.8	40.7	32.8	49.8	16.5	67.7	59.6
Cross-Encoder	MS Marco	50.7	25.5	47.0	81.9	35.6	71.8	47.0	34.5	57.6	17.0	69.1	71.0
Rank Vicuna	GPT 3.5	50.7	28.2	50.0	81.0	35.9	73.5	36.7	33.1	58.6	18.4	70.5	71.3
Rank Zephyr	GPT 3.5+4	53.7	25.6	50.0	80.1	42.2	71.6	42.7	37.7	65.6	20.5	76.7	78.4
FIRST	GPT-4	54.3	26.7	50.9	81.7	42.2	74.2	44.4	37.4	66.4	20.4	74.6	78.8
BlockRank Mistral	MS Marco	54.8	26.8	49.7	87.3	44.9	75.5	48.6	36.6	62.4	18.7	76.5	76.2

Figure 4 | P@1 and Latency (annotated) of Block-Rank vs Full-FT Mistral, scaling *N* on MSMarco.



Ablation

Block sparse attention doesn't hurt decoding performance

 Contrastive loss important for attention-based inference

 Attention-based inference is better for inferring multiple predictions

Table 3 | Impact of training loss on Attention-based (Attn) and Decoding (Decode) Inference.

Training Configuration	Precision@1			
Trumming Comminguitation	Decode	Attn		
Full-FT	28.7	27.6		
Full-FT (w/ aux)	28.7	28.1		
BlockRank (w/o ntp)	15.8	28.6		
BlockRank (w/o aux)	28.4	27.8		
BlockRank (full)	28.7	29.1		

Table 4 | Ablation: Inference Method Effectiveness & Latency (MSMarco, N=50).

Model	Inference Method	P@1	MRR@10
Full-FT	Decode	28.7	38.4
Full-FT	Attn	27.6	38.8
BlockRank	Decode	28.7	40.0
BlockRank	Attn	29.1	42.0

Agenda

01 IR in the age of LLMs

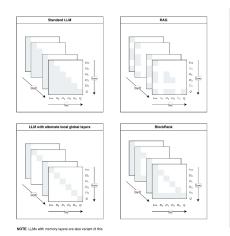
02 ICR Attention Analysis

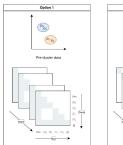
03 BlockRank - scalable ICR

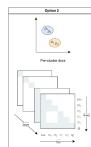
04 Future Directions

Better Modeling?

- Clustered Block Attention
- Memory Layers
- Landmark Attention







Pre/mid-training tasks for ICR?

Can we structure web pre-training data in a way that improve ICR quality?

A progressive end-to-end approach?

Use initial few layers to do retrieval, next few layers to do ranking and response generation while reusing the intermediate representations of the retrieval layers.

Thank You!

Arxiv - <u>2510.0596</u>,

Github - nilesh2797/BlockRank

Reach out - nilesh@cs.utexas.edu

