

Dec 2-7, 2025

RefLoRA: Refactored Low-Rank Adaptation for Efficient Finetuning of Large Models

Yilang Zhang

Dept. of ECE, University of Minnesota

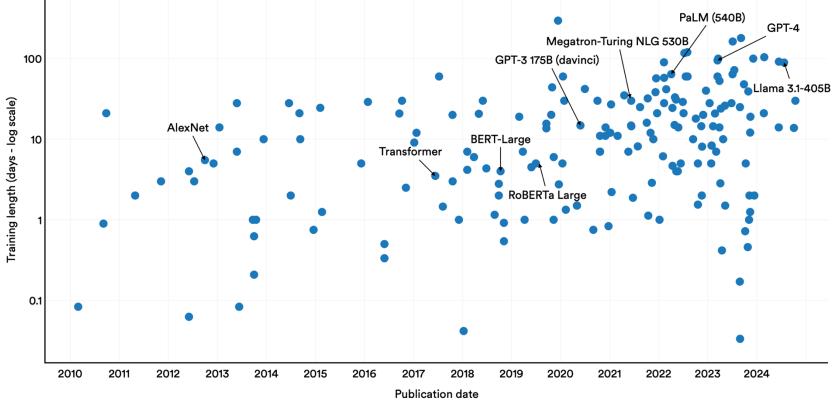
Aknowledgement: Bingcong Li, Georgios B. Giannakis

NSF grants 2220292, 2212318, 2312547, and 2332547

Challenge in finetuning

Training length of notable Al models, 2010-24

□ Challenge: rapid growth of model size vs. prohibitive computational overhead



Low-rank adaptation

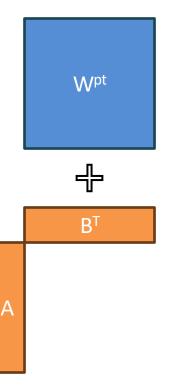
- Low-rank adaptation (LoRA)
 - o Consider a general weight matrix $\mathbf{W} = \mathbf{W}^{\mathrm{pt}} + \mathbf{W}^{\mathrm{ft}} \in \mathbb{R}^{m \times n}$
 - o Low-rank "adapters" $\mathbf{W}^{\mathrm{ft}} = \mathbf{A}\mathbf{B}^{\top}$, $\mathbf{A} \in \mathbb{R}^{m \times r}, \mathbf{B} \in \mathbb{R}^{n \times r} \ (r \ll m, n)$

$$\min_{\mathbf{A},\mathbf{B}} \ell(\mathbf{W}^{\mathrm{pt}} + \mathbf{A}\mathbf{B}^{\top})$$

o Initialize
$$\mathbf{A}_0 \sim \mathcal{N}(0, \sigma^2), \; \mathbf{B}_0 = \mathbf{0}$$
 > $\mathbf{W}_0 = \mathbf{W}^{\mathrm{pt}}$

$$\text{o} \quad \mathsf{Update} \quad \begin{aligned} \mathbf{A}_{t+1} &= \mathbf{A}_t - \eta \nabla \ell(\mathbf{W}_t) \mathbf{B}_t := \mathbf{A}_t + \Delta \mathbf{A}_t \\ \mathbf{B}_{t+1} &= \mathbf{B}_t - \eta \nabla \ell(\mathbf{W}_t)^\top \mathbf{A}_t := \mathbf{B}_t + \Delta \mathbf{B}_t \end{aligned}$$

✓ Markedly reduced (up to 100x) computational cost



Limitations of LoRA

Unbalanced update and slow convergence

$$\Delta \mathbf{A}_0 = -\eta \nabla \ell(\mathbf{W}_0) \mathbf{B}_0 := \mathbf{0}, \ \Delta \mathbf{B}_0 = -\eta \nabla \ell(\mathbf{W}_0)^{\top} \mathbf{A}_0$$

- Improved initialization: PiSSA [Meng et al'24], LoRA-GA [Wang et al'24], ...
- Nonunique factorization and inconsistent update

o Define
$$\Delta \mathbf{W}_t := \mathbf{W}_{t+1} - \mathbf{W}_t = \mathbf{A}_{t+1} \mathbf{B}_{t+1}^ op - \mathbf{A}_t \mathbf{B}_t^ op$$

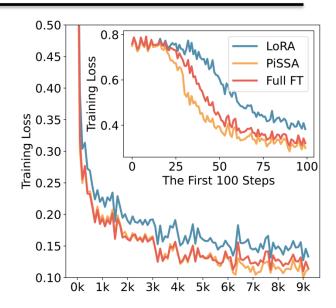
$$\circ$$
 Generally, $ilde{\mathbf{A}}_t ilde{\mathbf{B}}_t^ op = \mathbf{A}_t \mathbf{B}_t^ op \implies \Delta ilde{\mathbf{W}}_t = \Delta \mathbf{W}_t$

o Ex.
$$\tilde{\mathbf{A}}_t = c\mathbf{A}_t, \tilde{\mathbf{B}}_t = c^{-1}\mathbf{B}_t, \ c \neq 0, 1$$

$$\Delta \mathbf{W}_t = \mathbf{A}_t \Delta \mathbf{B}_t^\top + \Delta \mathbf{A}_t \mathbf{B}_t^\top + \Delta \mathbf{A}_t \Delta \mathbf{B}_t^\top$$

$$\Delta \tilde{\mathbf{W}}_t = c^2 \mathbf{A}_t \Delta \mathbf{B}_t^{\top} + c^{-2} \Delta \mathbf{A}_t \mathbf{B}_t^{\top} + \Delta \mathbf{A}_t \Delta \mathbf{B}_t^{\top}$$

Goal: Identify among all factorizations the optimal one that minimizes the loss per step



Parameter symmetries in LoRA

Structure of equivalent low-rank factorizations

Lemma 1 (ours). Assuming
$$\operatorname{rank}(\mathbf{A}_t) = \operatorname{rank}(\mathbf{B}_t) = r$$
, it holds that $\{(\tilde{\mathbf{A}}_t, \tilde{\mathbf{B}}_t) \mid \tilde{\mathbf{A}}_t \tilde{\mathbf{B}}_t^\top = \mathbf{A}_t \mathbf{B}_t^\top\} = \{(\mathbf{A}_t \mathbf{P}_t, \mathbf{B}_t \mathbf{P}_t^{-\top}) \mid \mathbf{P}_t \in \mathbb{R}^{r \times r} \text{ invertible}\}.$ In addition, if \mathbf{P}_t is orthogonal, it further holds $\Delta \tilde{\mathbf{W}}_t = \Delta \mathbf{W}_t.$

- \circ $\mathbf{P}_t \in \mathrm{GL}(r)$ characterizes all alternative factorizations
- o When $\tilde{\mathbf{A}}_t = \mathbf{A}_t \mathbf{P}_t$ and $\tilde{\mathbf{B}}_t = \mathbf{B}_t \mathbf{P}_t^{-\top}$, $\Delta \mathbf{W}_t = \mathbf{A}_t \Delta \mathbf{B}_t^{\top} + \Delta \mathbf{A}_t \mathbf{B}_t^{\top} + \Delta \mathbf{A}_t \Delta \mathbf{B}_t^{\top}$ $\Delta \tilde{\mathbf{W}}_t = \mathbf{A}_t \mathbf{P}_t \mathbf{P}_t^{\top} \Delta \mathbf{B}_t^{\top} + \Delta \mathbf{A}_t (\mathbf{P}_t \mathbf{P}_t^{\top})^{-1} \mathbf{B}_t^{\top} + \Delta \mathbf{A}_t \Delta \mathbf{B}_t^{\top}$
- o $\Delta ilde{\mathbf{W}}_t$ determined by SPD matrix $\mathbf{S}_t := \mathbf{P}_t \mathbf{P}_t^ op \in \mathbb{S}_{++}^r$
- \circ Let $\mathbf{P}_t \overset{ ext{svd}}{=} \mathbf{U}_t \mathbf{\Sigma}_t \mathbf{V}_t^ op$; arbitrary orthogonal matrix \mathbf{V}_t not affecting $\mathbf{S}_t = \mathbf{U}_t \mathbf{\Sigma}_t^2 \mathbf{U}_t^ op$

Goal: identify the optimal $\mathbf{S}_t \in \mathbb{S}_{++}^r$ that minimizes $\ell(\mathbf{W}_t + \Delta \tilde{\mathbf{W}}_t(\mathbf{S}_t))$ for each t

Refactoring via upper bound minimization

Refactored low-rank adaptation (RefLoRA)

Proposition 2 (ours). If ℓ is L-Lipschitz smooth, it follows that

$$\ell(\mathbf{W}_t + \Delta \tilde{\mathbf{W}}_t(\mathbf{S}_t)) \leq \frac{L\eta^2}{2} \|\nabla \ell(\mathbf{W}_t)\|_2^2 \Big(\|\mathbf{A}_t \mathbf{S}_t^{\frac{1}{2}}\|_F^2 + \|\mathbf{B}_t \mathbf{S}_t^{-\frac{1}{2}}\|_F^2 - \frac{1}{L\eta} \Big)^2 + \mathcal{O}(L\eta^3) + \text{Const.}$$

Minimize upper bound

$$\mathbf{S}_{t}^{*} = \underset{\mathbf{S}_{t} \in \mathbb{S}_{++}^{r}}{\operatorname{arg\,min}} \left(\|\mathbf{A}_{t}\mathbf{S}_{t}^{\frac{1}{2}}\|_{F}^{2} + \|\mathbf{B}_{t}\mathbf{S}_{t}^{-\frac{1}{2}}\|_{F}^{2} - \frac{1}{L\eta} \right)^{2}$$

Theorem 3 (ours). Define $\tilde{\mathbf{S}}_t = (\mathbf{A}_t^{\top} \mathbf{A}_t)^{-\frac{1}{2}} [(\mathbf{A}_t^{\top} \mathbf{A}_t)^{\frac{1}{2}} \mathbf{B}_t^{\top} \mathbf{B}_t (\mathbf{A}_t^{\top} \mathbf{A}_t)^{\frac{1}{2}}]^{\frac{1}{2}} (\mathbf{A}_t^{\top} \mathbf{A}_t)^{-\frac{1}{2}}$ and

$$ilde{C}_t = \|\mathbf{A}_t \check{\mathbf{S}}_t^{1/2}\|_{\mathrm{F}}^2 + \|\mathbf{B}_t \check{\mathbf{S}}_t^{-1/2}\|_{\mathrm{F}}^2$$
 . It holds that

$$\mathbf{S}_{t}^{*} \begin{cases} = \tilde{\mathbf{S}}_{t} &, \text{ if } \eta \geq \frac{1}{\tilde{C}_{t}L} \\ \ni \left[(\tilde{C}_{t}L\eta)^{-1} \pm \sqrt{(\tilde{C}_{t}L\eta)^{-2} - 1} \right] \tilde{\mathbf{S}}_{t} &, \text{ otherwise} \end{cases}$$

ightharpoonup "Refactor" via $ilde{\mathbf{A}}_t = \mathbf{A}_t \mathbf{S}_t^{*1/2}, \, ilde{\mathbf{B}}_t = \mathbf{B}_t \mathbf{S}_t^{*-1/2}$, and update via e.g., Adam(W)

Computational overhead

Overhead comparison

Method	Time	Space
LoRA forward/backward	$\Omega(mn)$	$\Omega(mn)$
LoRA-Pro [55] LoRA-RITE [61] RefLoRA (Thm. 3) RefLoRA-S (Thm. 4)	$\mathcal{O}(m^2r + (m+n+r)r^2) \ \mathcal{O}((m+n+r)r^2) \ \mathcal{O}((m+n+r)r^2) \ \mathcal{O}((m+n+r)r)$	$\mathcal{O}(m^2+(m+n+r)r) \ \mathcal{O}((m+n+r)r) \ \mathcal{O}(r^2) \ \mathcal{O}(1)$

- > Efficiency in both time and memory
- Simplified refactoring (RefLoRA-S)
 - o Constrain $\mathbf{S}_t = s_t \mathbf{I}_r, \ s_t \in \mathbb{R}_{++}$ \blacktriangleright $\tilde{\mathbf{A}}_t = \sqrt{s_t} \mathbf{A}_t, \ \tilde{\mathbf{B}}_t = \frac{1}{\sqrt{s_t}} \mathbf{B}_t$

Theorem 4 (ours). For RefLoRA-S, it holds that

$$s_t^* = \begin{cases} \frac{\|\mathbf{B}_t\|_{\mathrm{F}}}{\|\mathbf{A}_t\|_{\mathrm{F}}} &, \text{ if } \eta \ge \frac{1}{2\|\mathbf{B}_t\|_{\mathrm{F}}\|\mathbf{A}_t\|_{\mathrm{F}}L} \\ \frac{\frac{1}{L\eta} \pm \sqrt{\frac{1}{L^2\eta^2} - 4\|\mathbf{A}_t\|_{\mathrm{F}}^2}}{2\|\mathbf{A}_t\|_{\mathrm{F}}^2} &, \text{ otherwise} \end{cases}$$

RefLoRA properties

- $oldsymbol{\Box}$ Balanced Gram matrices $ilde{\mathbf{A}}_t^ op ilde{\mathbf{A}}_t = ilde{\mathbf{B}}_t^ op ilde{\mathbf{B}}_t$
- o Balanced Frobenius norm $\| ilde{\mathbf{A}}_t\|_{\mathrm{F}}^2 = \| ilde{\mathbf{B}}_t\|_{\mathrm{F}}^2$
- Inherently satisfied by SVD-based initialization such as PiSSA
- Maximal loss reduction

Theorem 5 (ours). The solution $\mathbf{S}_t = \tilde{\mathbf{S}}_t$ minimizes the lower bound $0 \geq \underbrace{\langle \nabla_{\tilde{\mathbf{A}}_t} \ell(\mathbf{W}_t), \Delta \tilde{\mathbf{A}}_t \rangle_{\mathrm{F}} + \langle \nabla_{\tilde{\mathbf{B}}_t} \ell(\mathbf{W}_t), \Delta \tilde{\mathbf{B}}_t \rangle_{\mathrm{F}}}_{\approx \Delta \ell(\mathbf{W}_t)} \geq -\eta \|\nabla \ell(\mathbf{W}_t)\|_2^2 (\|\mathbf{A}_t \mathbf{S}_t^{1/2}\|_{\mathrm{F}}^2 + \|\mathbf{B}_t \mathbf{S}_t^{-1/2}\|_{\mathrm{F}}^2).$

Consistent weight updates

Theorem 6 (ours). For any $\mathbf{A}_t'\mathbf{B}_t^{'\top} = \mathbf{A}_t\mathbf{B}_t^{\top}$, let $\Delta \tilde{\mathbf{W}}_t'$ and $\Delta \tilde{\mathbf{W}}_t$ be their weight updates with RefLoRA. It always holds

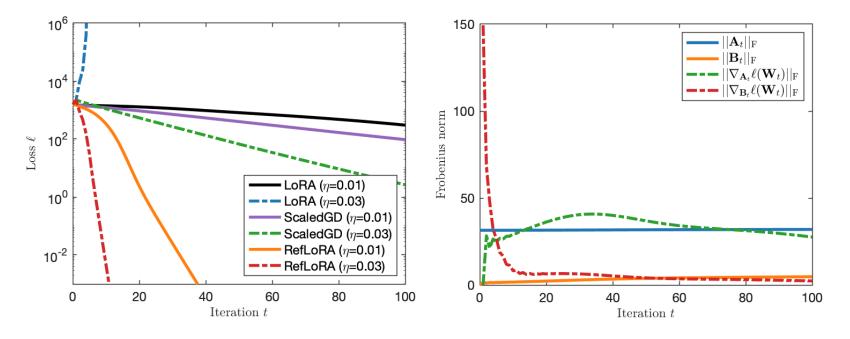
$$\Delta \tilde{\mathbf{W}}_t' = \Delta \tilde{\mathbf{W}}_t.$$

Toy test

Matrix factorization

$$\min_{\mathbf{A},\mathbf{B}} rac{1}{2} \|\mathbf{Y} - \mathbf{A}\mathbf{B}^{ op}\|_{\mathrm{F}}^2$$

- Can be viewed as LoRA on a single-layer model, with whitened inputs
- ScaledGD: tailored for low-rank matrix factorization; popular among LoRA variants



- Left: RefLoRA demonstrates stable and faster convergence
- Right: LoRA slows down due to the unbalanced update

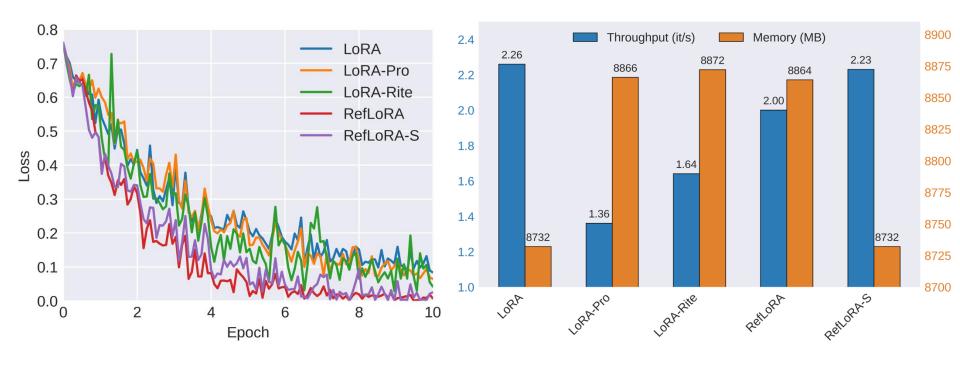
Natural language understanding (NLU)

- GLUE benchmark [Wang et al'19] using DeBERTaV3-base [He et al'23]
- o 5 random runs with r = 8

Method	Params	CoLA	SST-2	MRPC	STS-B	QQP	MNLI	QNLI	RTE	All	
11201104		Mcc	Acc	Acc	Corr	Acc/F1	M/Mm	Acc	Acc	Avg	
Full FT	184M	69.19	95.63	89.46	91.60	92.40/89.80	89.90/90.12	94.03	83.75	88.25	
BitFit	0.1M	66.96	94.84	87.75	91.35	88.41/84.95	89.37/89.91	92.24	78.70	86.20	
HAdapter	1.22M	68.64	95.53	89.95	91.48	91.91/89.27	90.13/90.17	94.11	84.48	88.28	
PAdapter	1.18M	68.77	95.61	89.46	91.54	92.04/89.40	90.33/90.39	94.29	85.20	88.41	
LoRA	1.33M	69.82	94.95	89.95	91.60	91.99/89.38	90.65/90.69	93.87	85.20	88.50	
DoRA	1.33M	70.85	95.79	90.93	91.79	92.07/-	90.29/-	94.10	86.04	88.98	
AdaLoRA	1.27M	71.45	96.10	90.69	91.84	92.23/89.74	90.76/90.79	94.55	88.09	89.46	
LoRA-Pro	1.33M	71.36	95.76	90.20	91.92	92.19/89.60	90.23/90.19	94.29	85.56	88.94	
LoRA-RITE	1.33M	69.55	95.41	90.93	91.79	92.02/89.42	90.22/90.33	94.42	85.20	88.69	
RefLoRA	1.33M	71.73	95.99	91.42	92.03	92.28/89.70	90.23/90.41	94.40	88.09	89.52	
RefLoRA-S	1.33M	70.66	95.76	90.44	92.21	92.43/89.89	90.13/90.17	94.16	87.73	89.19	

- Outperforms SOTA methods on 5 out of 8 datasets; comparable on the rest 3
- Best average performance; marginal drop (0.33%) with lightweight RefLoRA-S

Convergence and overhead tests



- Faster and stabler convergence
- Higher throughput and reduced memory usage than SOTA approaches
- RefLoRA-S is efficient and scalable as LoRA

Commonsense reasoning

Commonsense-170k [Hu et al'23] with LLaMA series [Touvron et al'23; Grattafiori et al'24]

	r	Method	Params	BoolQ	PIQA	SIQA	HS	WG	ARCe	ARCc	OBQA	Avg
Ch	ChatGPT-3.5-turbo		-	73.1	85.4	68.5	78.5	66.1	89.8	79.9	74.8	77.0
LLaMA-7B	32	LoRA	0.83%	66.42	80.03	77.84	82.88	81.85	79.92	63.40	77.20	76.19
		PrecLoRA	0.83%	68.96	80.95	77.43	81.54	80.27	78.83	64.16	79.20	76.42
		NoRA+	0.83%	69.85	81.83	77.38	82.09	80.03	79.67	64.25	78.60	76.71
		DoRA	0.84%	69.7	83.4	78.6	87.2	81.0	81.9	66.2	79.2	78.4
M		LoRA-RITE	0.84%	69.82	82.75	78.55	84.72	81.69	82.15	66.23	81.40	78.54
[a]		RefLoRA	0.83%	69.60	82.48	79.53	88.25	82.56	81.57	66.64	80.20	78.85
		RefLoRA-S	0.83%	70.18	82.48	78.15	87.41	82.08	81.52	65.36	81.60	78.60
		DoRA	0.43%	70.0	82.6	79.7	83.2	80.6	80.6	65.4	77.6	77.5
	16	RefLoRA	0.41%	69.66	82.43	79.43	87.38	81.22	80.68	65.44	78.60	78.11
		RefLoRA-S	0.41%	67.65	81.50	79.07	88.28	81.77	81.23	64.59	78.60	77.84
		LoRA	0.83%	69.8	79.9	79.5	83.6	82.6	79.8	64.7	81.0	77.6
		PrecLoRA	0.83%	71.47	81.50	78.81	85.97	80.43	81.14	66.55	81.00	78.36
В	32	NoRA+	0.83%	70.52	81.94	79.07	87.66	82.24	82.70	67.06	80.20	78.92
LLaMA2-7B	32	DoRA	0.84%	71.8	83.7	76.0	89.1	82.6	83.7	68.2	82.4	79.7
I		LoRA-RITE	0.84%	71.04	82.43	79.79	89.12	84.53	83.88	68.77	81.20	80.10
a\		RefLoRA	0.83%	72.54	83.79	80.04	86.94	84.85	86.36	71.50	80.20	80.78
LI		RefLoRA-S	0.83%	73.36	83.84	80.76	90.02	82.48	84.55	67.92	82.60	80.69
		DoRA	0.43%	72.0	83.1	79.9	89.1	83.0	84.5	71.0	81.2	80.5
	16	RefLoRA	0.41%	71.38	82.43	80.35	90.49	83.43	84.05	69.28	82.00	80.43
		RefLoRA-S	0.41%	72.08	83.03	80.45	85.89	83.27	84.30	69.88	82.00	80.11
	32	LoRA	0.70%	70.8	85.2	79.9	91.7	84.3	84.2	71.2	79.0	80.8
		PrecLoRA	0.70%	70.73	85.80	78.86	91.87	83.66	85.10	71.08	82.40	81.19
SB SB		NoRA+	0.70%	71.16	85.10	79.48	92.22	83.35	85.86	72.27	83.20	81.58
3-8	32	DoRA	0.71%	74.6	89.3	79.9	95.5	85.6	90.5	80.4	85.8	85.2
LLaMA3-8B		LoRA-RITE	0.84%	74.19	89.44	81.52	95.44	86.74	90.45	80.12	86.60	85.56
		RefLoRA	0.70%	75.35	88.74	80.91	95.71	86.66	90.49	80.20	87.40	85.68
		RefLoRA-S	0.70%	75.50	89.72	81.11	95.59	87.29	90.99	79.78	86.00	85.75
	16	DoRA	0.35%	74.5	88.8	80.3	95.5	84.7	90.1	79.1	87.2	85.0
		RefLoRA	0.35%	75.26	88.79	81.37	95.85	85.64	90.11	80.55	86.60	85.52
		RefLoRA-S	0.35%	74.92	89.01	80.60	95.75	85.24	90.45	80.89	86.40	85.41

Highest average accuracies in 5 out of 6 setups

Subject-driven image generation

o DreamBooth [Ruiz et al'23] using Stable Diffusion v1.4 [Rombach et al'21] with r=4

Loss	LoRA	LoRA-Pro	LoRA-RITE	RefLoRA
Avg±std	0.100 ± 0.015	0.099 ± 0.015	0.095 ± 0.016	0.086 ± 0.017

Prompt:

"a dog eating nachos"

 Clearer details and better object fidelity

Concluding remarks

- LoRA suffers from slow convergence, and inconsistent update
- Non-unique factorization characterized by an SPD matrix
- □ RefLoRA(-S) optimizing loss upper bound
- Extensive numerical tests on various tasks and models
- Faster convergence and consistent update with minimum overhead

