

ReplaceMe: Training-Free Depth Pruning via Transformer Block Linearization

D. Shopkhoev¹², A. Ali¹², M. Zhussip¹, V. Malykh¹²³, S. Lefkimmiatis¹, N. Komodakis⁴⁵⁶, S. Zagoruyko⁷ MTS AI, ²ITMO University, ³IITU, ⁴University of Crete, ⁵IACM-Forth, ⁶Athena RC, ⁷Polynome

Motivation & Problem

LLMs are powerful but computationally expensive—limiting their real-world use due to high latency, energy consumption, and hardware demands.

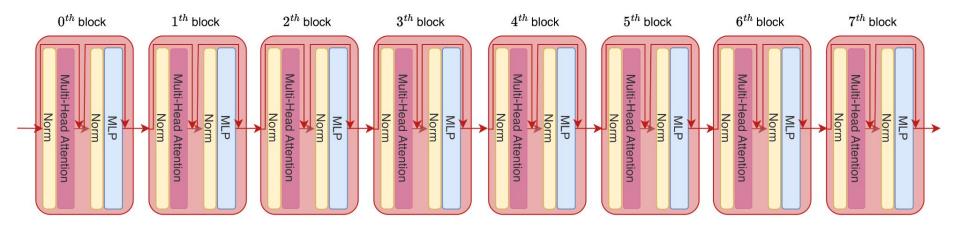
Prior works (e.g., UIDL, LLM-Streamline) have shown that LLM contain redundant blocks that can be removed. **BUT**, such pruning often leads to

- (1) performance degradation
- (2) architectural modifications with fine-tuning.

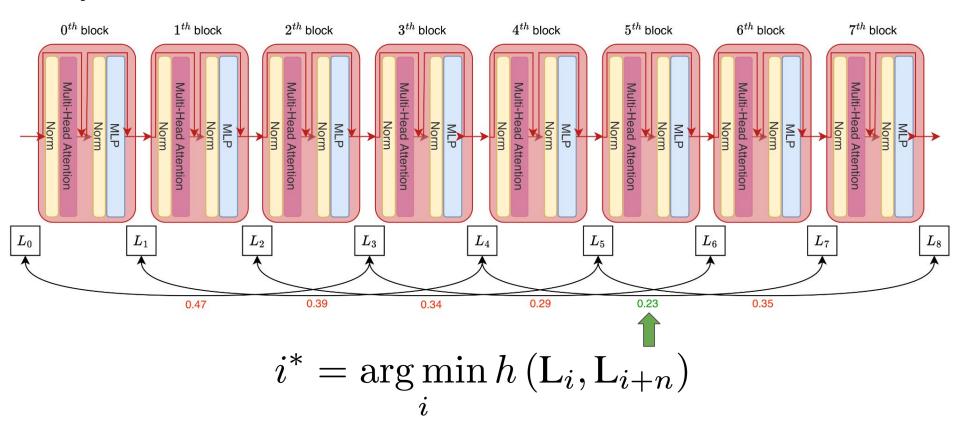
ReplaceMe – Core Idea

We propose **ReplaceMe** – a training-free depth-pruning method that replaces pruned blocks with a single linear transformation. Up to **25% depth reduction** with **>90% original performance retained** SoTA in accuracy, speed, and sustainability

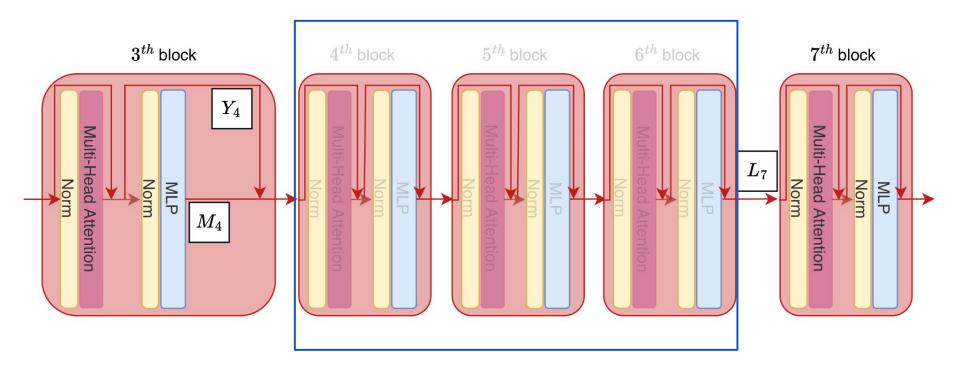
Identify redundant consecutive transformer blocks.

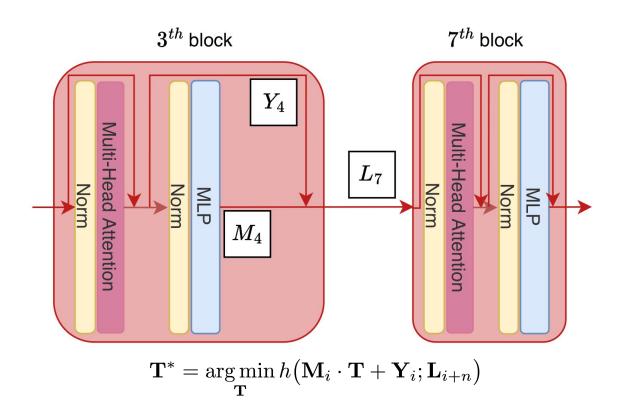


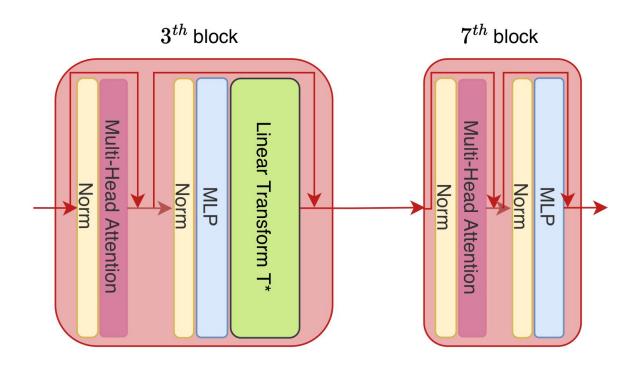
Replace them with a single linear transformation estimated from a small calibration dataset.

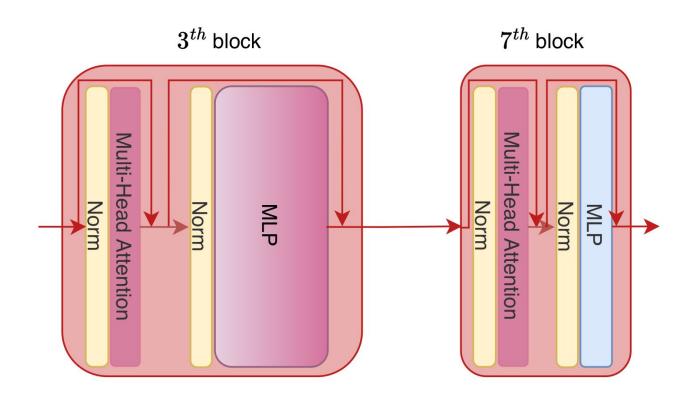


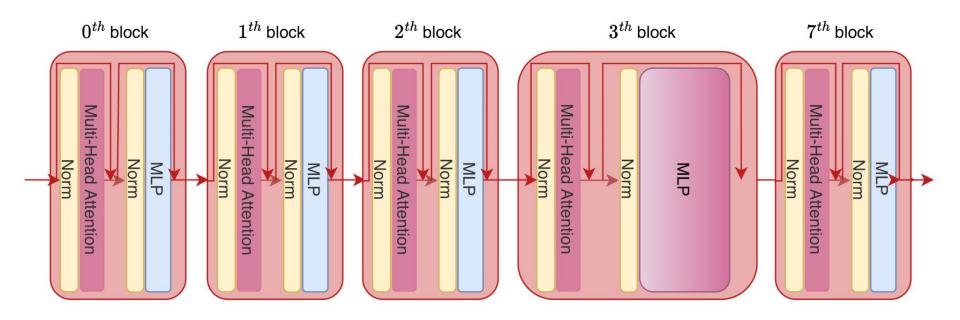
Fuse this linear transformation into MLP. Say NO! to (1) extra parameters! (2) retraining!


Original model


Layer Selection


Removing layers


Linear Transform Estimation


Linear Transform Estimation

Fusing Linear Transform

Final Model

Method Overview

- Step 1 Layer Selection: find cut index $i^* = rg \min_i h\left(\mathbf{L}_i, \mathbf{L}_{i+n} \right)$
- Step 2 Linear Transform Estimation $\mathbf{T}^* = rg \min_{\mathbf{T}} h ig(\mathbf{M}_i \cdot \mathbf{T} + \mathbf{Y}_i; \mathbf{L}_{i+n} ig)$ Solve:
 - a. Analytical (L2): Least squares → fast

$$\mathbf{T}^* = (\mathbf{M}_i^T \cdot \mathbf{M}_i)^{-1} \cdot \mathbf{M}_i^T \cdot \left(\mathbf{L}_{i+n} - \mathbf{Y}_i
ight)$$

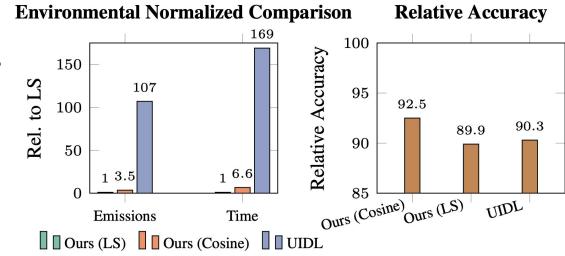
b. Numerical (Cosine): Adam optimizer → higher accuracy

$$\mathbf{T}^* = \operatorname*{arg\,min}_{\mathbf{T}} \sum_{k=1}^{N} \left(1 - \frac{(\mathbf{M}_{i,k} \cdot \mathbf{T} + \mathbf{Y}_{i,k})^{\mathsf{T}} \cdot \mathbf{L}_{i+n,k}}{\|\mathbf{M}_{i,k} \cdot \mathbf{T} + \mathbf{Y}_{i,k}\|_{2} \|\mathbf{L}_{i+n,k}\|_{2}} \right)$$

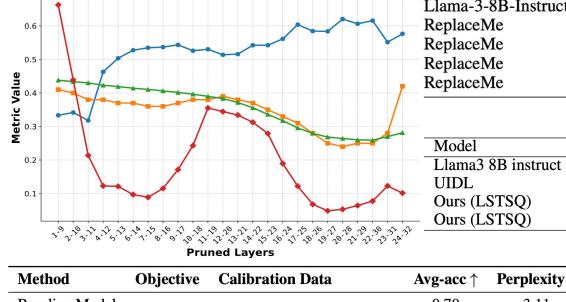
- Regularization & Multi-LT:
 - a. L1/L2 regularization balances accuracy vs. perplexity
 - b. Multi-LT: multiple non-overlapping pruned segments → better for high compression

Results – LLMs

Method	Tra	in-Free	C3	CMNLI	CHID (test)	WSC	Hella Swag	PIQA	Race-M	Race-H	MMLU	CMMLU	AVG	RP
Llama 2 7B (baseline)	İ		43.8	33.0	41.6	37.5	71.3	78.1	33.1	35.5	46.8	31.8	45.3	100.0%
LLM-Streamline*		×	43.3	33.0	24.1	36.5	61.1	71.5	34.8	37.0	45.5	29.4	41.6	92.0%
LLMPruner*		×	29.7	33.4	28.4	40.4	54.6	72.0	22.9	22.0	25.3	25.0	35.4	78.2%
SliceGPT*		×	31.5	31.6	18.5	43.3	47.5	68.3	27.0	29.4	28.8	24.8	35.1	77.5%
LaCo*		X	39.7	34.4	36.1	40.4	55.7	69.8	23.6	22.6	26.5	25.2	37.4	82.7%
UIDL*		×	40.2	34.4	21.5	40.4	59.7	69.0	35.2	34.7	44.6	28.9	40.9	90.3%
Ours (Cosine)		1	42.5	33.0	25.2	38.5	59.4	71.1	35.4	36.7	46.4	30.4	41.9	92.5%
Ours (LS)		✓	39.4	33.0	18.9	38.5	58.5	70.5	37.1	36.5	45.2	29.2	40.7	89.9%


Method	Linear transform	Lambada-openai ppl \downarrow	Avg-acc↑	RP↑
Llama 3 8B Instruct [8]		3.11	0.7	100%
SVD-LLM [53]	None	29.90	0.59	85.3%
LLMPruner [29]	None	12.31	0.60	85.3%
UIDL [13]	Identity	2216.96	0.58	82.5%
ReplaceMe(ours)	Linear (LS)	20.23	0.63	89.9%
ReplaceMe(ours)	Linear (Cosine)	15.88	0.63	90.9%
ReplaceMe(ours)	Multi_LT_NC (Cosine)	13.95	0.63	90.0%

Vision Transformers – CLIP ViT


Model	Compres. ratio		O Captions rieval)	s Cifar10 (zero-shot)		VOC2007 Multilabel (zero-shot)	VTAB/EuroSAT	
		text recall@5	vision recall@5	acc1	acc5	mean_avg_p	acc1	acc5
CLIP-L/14 [37]	-	0.794	0.611	0.956	0.996	0.790	0.625	0.960
UIDL	13%	0.745	0.609	0.927	0.996	0.781	0.490	0.931
ReplaceMe (LS)	13%	0.767	0.620	0.939	0.996	0.800	0.552	0.941
UIDL ReplaceMe (LS)	25% 25%	0.515 0.556	0.418 0.471	0.693 0.780	0.971 0.971	0.597 0.688	0.381 0.395	0.814 0.823

Efficiency & Sustainability

- No retraining → ~100× less
 CO₂ vs. UIDL (Fig. 2)
- Compression time: minutes vs. hours/days
- Memory: stores only 2 activations per token (optimized cosine loss)
- Fused architecture: no inference overhead

Ablations & Insights

Method	Number of LTs	Perplexity	Avg. Acc
Llama-3-8B-Instruct			
ReplaceMe	1	21.2061	0.6244
ReplaceMe	2	18.9853	0.6296
ReplaceMe	4	16.0669	0.6245
ReplaceMe	8	37.9760	0.6092

Compression

25%

25%

25%

Sciq Accuracy

0.93 0.687

0.89

0.858

Calibration Data

Sciq- Task specific

Sciq- Task specific

Orca General

Method	Objective	Calibration Data	Avg-acc ↑	Perplexity \downarrow	% ↑
Baseline Model		-	0.70	3.11	100.00
ReplaceMe	LS	fineweb 8k	0.56	26.74	80.47
ReplaceMe	LS	slim_orca 8k	0.62	21.21	89.59
ReplaceMe	LS	orca_generated 8k	0.61	13.58	87.40
ReplaceMe	Cosine	fineweb 8k	0.58	25.07	83.16
ReplaceMe	Cosine	slim_orca 8k	0.63	15.90	90.67
ReplaceMe	Cosine	4K SlimOrca + 4K Fineweb	0.63	15.85	90.51
ReplaceMe	Cosine	Mix of 66 languages	0.63	15.72	90.64
ReplaceMe	Cosine	orca_generated 8k	0.61	13.24	87.33

- ReplaceMe is a simple, training-free, effective depth pruning method
- >90% original performance at 25% compression
- Works across LLMs (Llama, Qwen, Falcon) and Vision Transformers (CLIP-ViT)
- Open-source: https://github.com/mts-ai/ReplaceMe
- Enables sustainable, accessible AI without retraining

- ReplaceMe is a simple, training-free, effective depth pruning method
- >90% original performance at 25% compression
- Works across LLMs (Llama, Qwen, Falcon) and Vision Transformers (CLIP-ViT)
- Open-source: https://github.com/mts-ai/ReplaceMe
- Enables sustainable, accessible Al without retraining

- ReplaceMe is a simple, training-free, effective depth pruning method
- >90% original performance at 25% compression
- Works across LLMs (Llama, Qwen, Falcon) and Vision Transformers (CLIP-ViT)
- Open-source: https://github.com/mts-ai/ReplaceMe
- Enables sustainable, accessible AI without retraining

- ReplaceMe is a simple, training-free, effective depth pruning method
- >90% original performance at 25% compression
- Works across LLMs (Llama, Qwen, Falcon) and Vision Transformers (CLIP-ViT)
- Open-source: https://github.com/mts-ai/ReplaceMe
- Enables sustainable, accessible AI without retraining

- ReplaceMe is a simple, training-free, effective depth pruning method
- >90% original performance at 25% compression
- Works across LLMs (Llama, Qwen, Falcon) and Vision Transformers (CLIP-ViT)
- Open-source: https://github.com/mts-ai/ReplaceMe
- Enables sustainable, accessible Al without retraining

Thank you!

We invite you to our poster for more details about our work

Open-source framework: https://github.com/mts-ai/ReplaceMe

