

Faithful Group Shapley Value

Kiljae Lee*, Ziqi Liu*, Weijing Tang, and Yuan Zhang

The Ohio State University, Carnegie Mellon University

Data Valuation via Shapley Value

• In data valuation, Ghorbani and Zou (2019) used the **Shapley value** to quantify each data point's contribution to model performance.

Definition [Data Shapley]

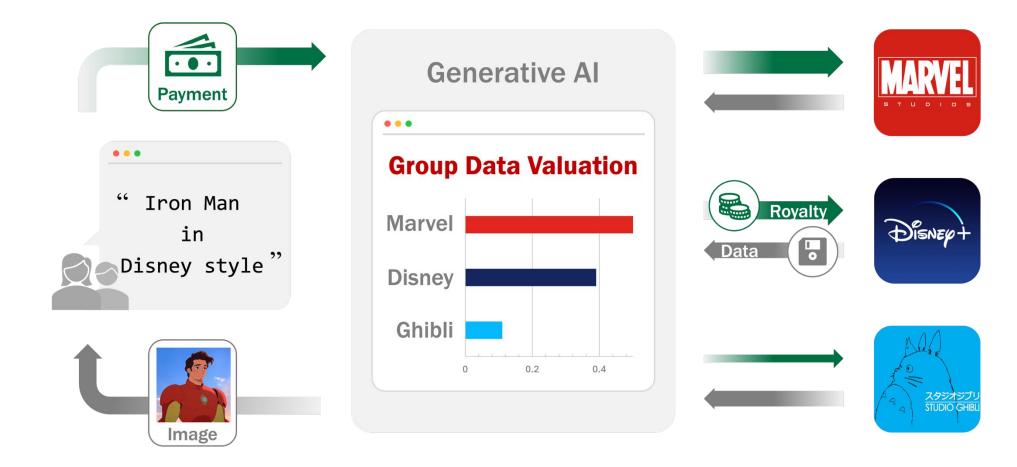
For a dataset $\mathcal{D} = \{z_1, ..., z_n\}$ and a utility function $U: 2^{\mathcal{D}} \to \mathbb{R}$, the (individual) **Shapley Value** of *i*-th player is defined as

$$SV(z_i) = \sum_{S \subseteq \mathcal{D} \setminus \{z_i\}} \frac{|S|! (n - |S| - 1)!}{n!} [U(S \cup \{z_i\}) - U(S)].$$

• U(S) measures model performance when trained on the subset S.

Group Data Valuation

• In many applications, data naturally form groups.



Group Shapley Value

• The standard baseline on **group data valuation** treats each group as a single player.

Definition [Group Shapley Value (GSV)]

For a dataset $\mathcal{D} = \{z_1, ..., z_n\}$, its partition $\Pi = \{S_1, ..., S_K\}$, and a utility function $U: 2^{[n]} \to \mathbb{R}$, the **Group Shapley Value** of j-th group is defined as $GSV(S_j) = \sum_{S \subseteq \Pi \setminus \{S_j\}} \frac{|S|! (K - |S| - 1)!}{K!} [U(agg(S) \cup S_j) - U(agg(S))],$ where $agg(S) = \bigcup_{T \in S} T$.

• Note that when each $S_k \in \Pi$ is a singleton, GSV reduces to the individual Shapley value.

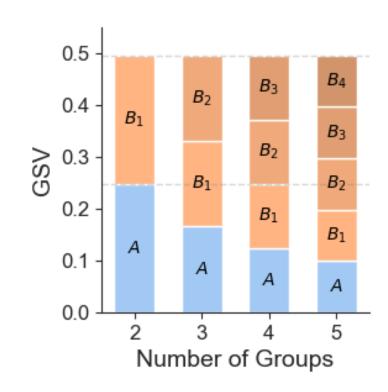
Key Observation: Shell Company Attack

 However, we identify that GSV can be manipulated by splitting a real group into many small "shell" subgroups.

Example [Shell Company Attack (informal)]

Suppose data consist of two groups: A and B. Under GSV, splitting B into smaller subgroups $B_1, B_2, ...$ inflates the total share B receives:

$$GSV(B_1) + GSV(B_2) + \cdots > GSV(B)$$

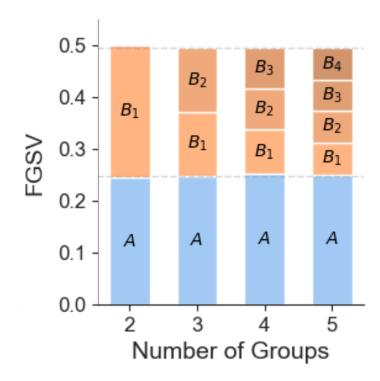


Our Method: Faithful Group Shapley Value

 We propose Faithful Group Shapley Value (FGSV) to defend the shell company attack.

Definition [Faithful Group Shapley Value (FGSV)]
Under the group data valuation setting, the Faithful
Group Shapley Value of j-th group is defined as the
sum of individual Shapley values within the group

$$FGSV(S_j) = \sum_{i \in S_j} SV(i)$$



Theory: Uniqueness under Axiomatization

- FGSV is uniquely characterized by following five axioms:
 - 1. Efficiency
 - 2. Linearity
 - 3. Symmetry
 - 4. Null Player
 - 5. Faithfulness New Axiom for fending off the shell company attack

Classical Shapley Axioms (but "group" version)

Axiom [Faithfulness]

If S is a common member of two different partitions Π_1 , Π_2 , of \mathcal{D} , then the group valuation function ν satisfies

$$\nu(S; \Pi_1) = \nu(S; \Pi_2)$$

Theorem [Uniqueness of FGSV]

The group valuation function ν satisfies the above five axioms if and only if

$$\nu(S_j) = FGSV(S_j)$$

Computation: Direct Estimation of FGSV

- It is possible to **directly estimates the sum** of individual Shapley values for each group.
- The key idea is FGSV's probabilistic representation:

Lemma [Alternative Representation]

Let
$$s_0 = |S_j|$$
. Then,
$$FGSV(S_j) = \frac{s_0}{n} [U(\mathcal{D}) - U(\emptyset)] + \sum_{s=1}^{n-1} \mathbb{E}_{s_1 \sim HG(n,s_0,s)} \left[\frac{n}{n-s} \left(\frac{s_1}{s} - \frac{s_0}{n} \right) \mu(s_1,s) \right],$$
 where $\mu(s_1,s)$ is the average utility of S satisfying $s = |S|$ and $s_1 = |S \cap S_j|$.

• This allows us to **approximate FGSV** before estimation by using the exponential tail of hypergeometric r.v.'s.

Computation: Direct Estimation of FGSV

• Our method achieves (ϵ, δ) -approximation with much fewer utility evaluations.

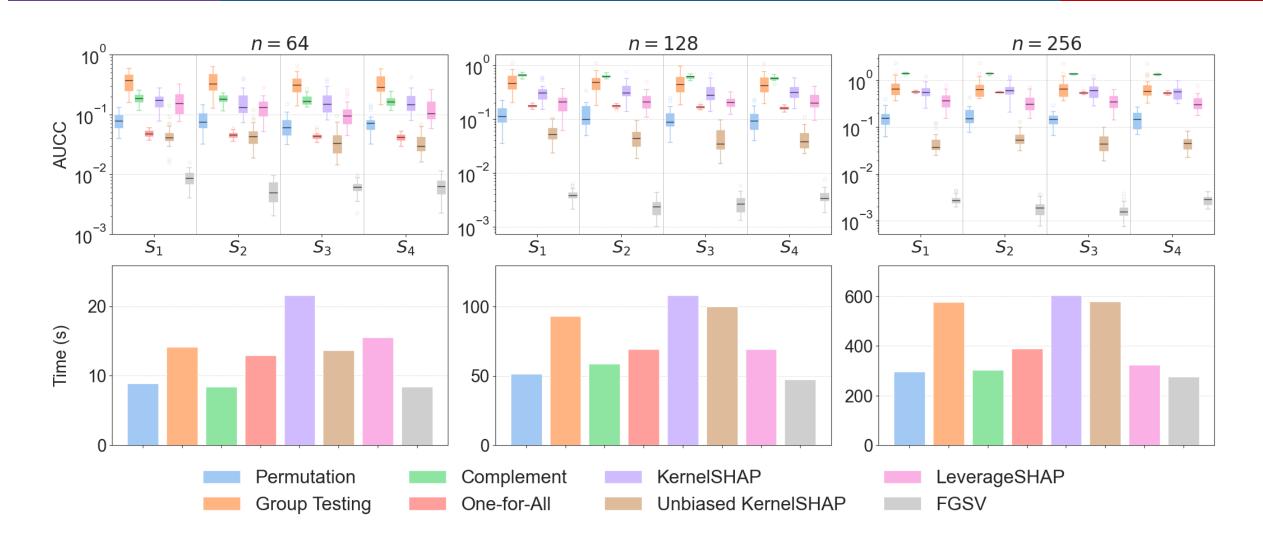
Definition [(ϵ, δ) -Approximation]

An estimator $\hat{\theta}$ for θ is called an (ϵ, δ) -approximation if

$$\mathbb{P}\big(\|\widehat{\theta} - \theta\|_2 \ge \epsilon\big) \le \delta$$

FGSV: $\mathcal{O}(n(\log n)^3)$ vs. SOTA by summing SV's: $\mathcal{O}(n^2 Poly(\log n))$

Empirical Results



Application: Copyright Sharing in GenAl

