

COALA: Numerically Stable and Efficient Framework for Context-Aware Low-Rank Approximation

Uliana Parkina, Maxim Rakhuba

HSE University

NeurIPS 2025

Introduction

To compress a weight matrix W of an LLM, we consider the **W**eighted **L**ow-rank **A**pproximation (WLA) problem:

$$\min_{\operatorname{rank}(W') \le r} \| (W - W') X \|_{F}, \tag{1}$$

where $W \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$ with a low-rank W', $X \in \mathbb{R}^{d_{\text{in}} \times M}$ – calibration data matrix. Our contribution:

- We propose inversion-free formulas for improved numerical stability.
- We add regularization to boost approximation quality in all settings.
- We develop a QR-based solution that is efficient and GPU-parallelizable.

WLA does not require matrix inversion!

Example of conventional route to solve problem^{1, 2, 3}

$$W' = SVD_r(WS)S^{-1}$$
, where S is any matrix that $SS^{\top} = XX^{\top}$.

- Only works for X of full column rank.
- Evaluating S^{-1} may lead to a precision loss for nearly singular S.

¹Xin Wang et al. "SVD-LLM: Truncation-aware Singular Value Decomposition for Large Language Model Compression". In: *The Thirteenth International Conference on Learning Representations*. 2025.

²Zhiteng Li et al. "AdaSVD: Adaptive Singular Value Decomposition for Large Language Models". In: CoRR abs/2502.01403 (Feb. 2025). URL: https://doi.org/10.48550/arXiv.2502.01403.

³Patrick Chen et al. "Drone: Data-aware low-rank compression for large nlp models". In: Advances in neural information processing systems 34 (2021), pp. 29321–29334.

WLA does not require matrix inversion!

Our route to solve problem

$$W' = U_r U_r^{\top} W$$
, where $U_r \Sigma_r V_r^{\top} = SVD_r(WX)$.

In exact arithmetic, these are identical - even if you can't see it!

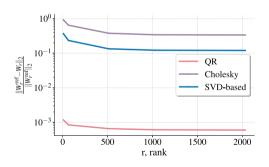


Figure: Relative error vs. rank for various methods.

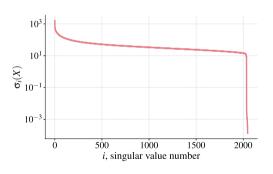


Figure: Behavior of singular values $\sigma_i(X)$.

What if the calibration matrix X is huge?

Forming WX and evaluating SVD explicitly becomes expensive.

Solution:

$$\|(W - W')X\|_F = \|(W - W')R^\top\|_F$$
, where $QR = X^T$,

To handle massive X, we employ a block-wise QR scheme, known as $TSQR^4$.

$$X_{0} \rightarrow R_{0}$$

$$X_{1} \rightarrow R_{1}$$

$$X_{2} \rightarrow R_{2}$$

$$X_{3} \rightarrow R_{3}$$

$$R_{0123}$$

$$R_{0123}$$

⁴ James Demmel et al. "Communication-optimal parallel and sequential QR and LU factorizations". In: SIAM Journal on Scientific Computing 34.1 (2012), A206–A239.

Efficiency. Experiments

QR is still the quickest initializer for large-model compression, even with highly unbalanced matrices.

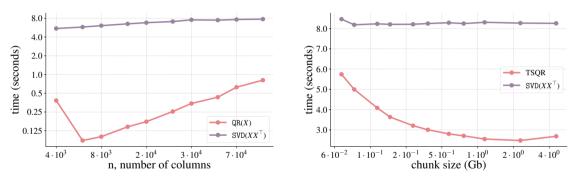


Figure: Runtimes for computing $S: SS^{\top} = XX^{\top}$ using two approaches. Left: Matrix $X \in \mathbb{R}^{4096 \times n}$ for different n. Right: Matrix $X \in \mathbb{R}^{4096 \times 3 \cdot 10^5}$ split into chunks of different size. In this case, QR is computed using the TSQR method and the Gram matrix using $XX^{\top} = \sum_{i=1}^{p} X_i X_i^{\top}$.

Let's add regularization

$$\min_{\text{rank}(W') \le r} \|WX - W'X\|_F^2 + \mu \|W - W'\|_F^2 \tag{2}$$

In practice, we also want to adapt the model to fit the available examples, but not excessively, as we aim to avoid overfitting and preserve the model's knowledge in other domains:

What is the limit of W_{μ} as $\mu \to 0$?

Let's add regularization

Theorem

Suppose that X has $\operatorname{rank}(X) = k \ge r$ and that $\sigma_r(WX) \ne \sigma_{r+1}(WX)$. Then, if the solution W_0 to the problem (1), and if W_μ denotes the solution to the regularized problem (2):

$$\|W_0 - W_{\mu}\|_F \leq \frac{2\|W\|_2^2 \|W\|_F \left(\frac{\sigma_1(X)}{\sigma_k(X)} + \max\left(1, \frac{\mu}{4\sigma_k^2(X)}\right)\right)}{\sigma_r^2(WX) - \sigma_{r+1}^2(WX)} \cdot \mu$$

In practice, we observe a this linear dependence on μ , and the proportionality constant correlates with the singular-value gap.

Experiments

Table: Metric values of various compression methods. Experiments were conducted using the Mistral-7B model on the WikiText2 dataset and commonsense reasoning used for validation.

Ratio	Method	MMLU	BoolQ	PIQA	WiNoG	HSweg	ARC-E	ARC-C	OBQA
0%	Mistral-7B	62.50	83.98	82.05	73.95	81.02	79.55	53.92	44.00
80%	FLAP	25.90	62.26	72.31	64.09	55.94	51.05	31.91	36.80
	SliceGPT	28.60	37.86	60.66	59.43	45.10	48.15	30.03	32.00
	SVD-LLM	41.80	68.29	73.39	68.43	61.75	71.34	40.53	36.60
	SoLA	44.20	66.09	73.67	68.75	63.32	69.99	39.76	39.20
	COALA	41.20	78.07	77.0 4	68.82	65.06	72.13	43.43	40.20
70%	FLAP	26.40	65.26	69.59	64.80	55.61	48.91	30.55	35.80
	SliceGPT	25.00	37.83	54.41	51.62	32.54	35.02	22.95	26.80
	SVD-LLM	28.20	64.62	64.91	64.17	47.36	58.25	30.72	34.20
	SoLA	33.80	62.57	68.39	64.48	53.00	60.90	<u>32.76</u>	37.60
	COALA	27.35	63.82	70.40	62.43	51.02	63.63	35.49	36.00

More stuff!

- ullet Sensitivity analysis with respect to μ
- More experiments
- We also show that an analogous problem arises in PEFT when initializing adapter layers

Learn this and more in our paper!

