

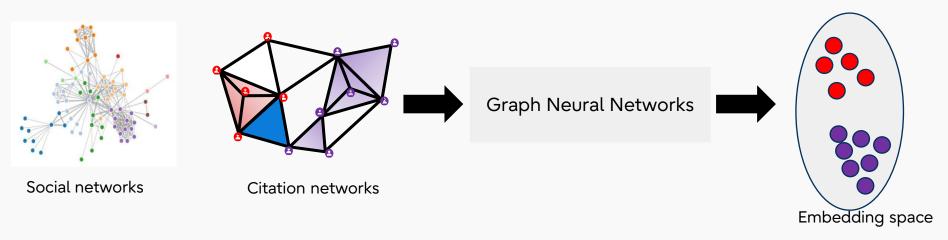
Interpretable and Parameter Efficient **Graph Neural Additive Models with Random Fourier Features**

Thummaluru Siddartha Reddy Vempalli Nagasai Saketh

Fujitsu Research of India, Bangalore

Graphs and Graph Neural Networks

Graphs are mathematical objects that captures the relationship between the entities (nodes) through edges.

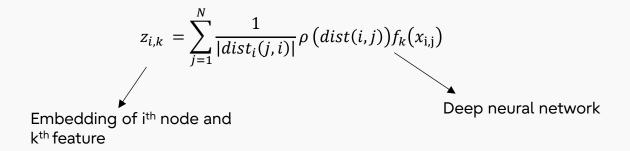


- GNNs are deep representation learning architectures with graphs as inductive bias
- GNNs obtains the embeddings using the message passing or graph convolution techniques which typically mixes features. Therefore the representations obtained from GNNs lack interpretability.

Graph Neural Additive Model (GNAN)

- * Additive modelling is workhorse principle behind interpretable deep learning architectures
- GNAN is the first graph neural additive model that models contributions of each features using a DNN.

Set up: Graph (G) with N nodes and feature matrix as $\mathbf{X} \in \mathbb{R}^{N \times D}$



Challenges

- * Training a DNN for each feature is computationally intense if feature dimension is large.
- Computing a dist() function costs $O(N^2 + NE)$, which and is not feasible for large scale graphs.

Graph Neural Additive Model with RFFs

Motivation: To propose a light-weight graph model that is inherently interpretable

Set up: Graph (G) with N nodes and feature matrix as $\mathbf{X} \in \mathbb{R}^{N \times D}$

Framework: We model each feature contribution with a GP prior whose kernel admits RFF approximation.

$$y_i = \sum_{k=1}^{D} f_k(x_{i,k})$$

$$f_k = \mathcal{GP}(0, \mathbf{K}_{\mathbf{G}}(.))$$

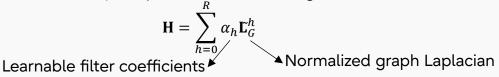
$$\mathbf{K}_{\mathbf{G}}(.) = \frac{a_{i,j}(x_{i,k} - x_{j,k})^2}{2\Theta^2}$$

- The kernel can be equivalently expressed as $\mathbf{K}_{\mathbf{G}}(.) = \frac{\left(\tilde{\mathbf{x}}_{i,k} \tilde{\mathbf{x}}_{j,k}\right)^2}{2\Theta^2}$
- Proposed kernel is shift invariant and positive definite for a fixed node pair kernel can be approximated as $\mathbf{K}_{\mathbf{G}}(.) = \Phi_{\mathbf{a}}^{\mathbf{T}}(x_{i,k})\Phi_{\mathbf{a}}(x_{j,k})$

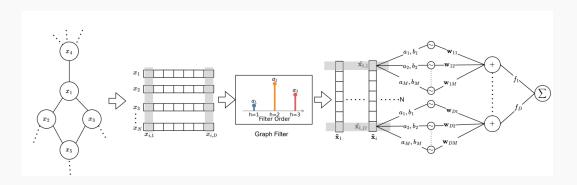
Drawback: It captures only information from one-hop and fails to aggregate information from multi-hops

Graph Neural Additive Model with RFFs

❖ To obtain the information from multi-hop we process the data using FIR filter



- The filtered features are given as $\widetilde{X} = HX$
- Now the kernel is modified to account for the information from multi-hops $\mathbf{K}_{\mathbf{G}}(.) = \frac{\left\{\tilde{\mathbf{X}}_{i,k} \tilde{\mathbf{X}}_{j,k}\right\}^2}{2\Theta^2}$ $\mathbf{K}_{\mathbf{G}}(.) = \Phi_{\mathbf{a}}^{\mathbf{T}}(x_{i,k})\Phi_{\mathbf{a}}(x_{j,k})$
- Leveraging the kernel approximation GP prior now transforms as Bayesian prior as $f_k(x_{i,k}) = \Phi_a^T(\tilde{\mathbf{x}}_{i,k})\mathbf{w}_k$



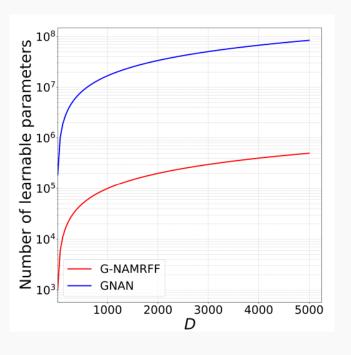
$$y_i = \sum_{k=1}^{D} \Phi_{\mathbf{a}}^T (\tilde{\mathbf{x}}_{i,k}) \mathbf{w}_{\mathbf{k}}$$

Complexity analysis

- Number of learnable parameters
 - GNAN: $(D+1) \times (H_u^2 \times (L-1) + (L+2) \times H_u + 1)$
 - G-NAMRFF: $D \times M + R + 1$

168x fewer parameters compared to GNAN

$$H_u = 64, L = 5, D = 100, M = 100, R = 5$$



Theoretical Analysis

Permutation equivariance:

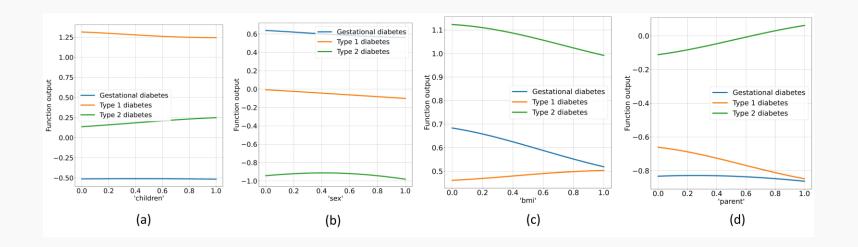
Theorem (Permutation Equivariance). Let $\mathcal{P} = \{\mathbf{P} \in \{0,1\}^{N \times N} : \mathbf{P}^{\top}\mathbf{P} = \mathbf{P}\mathbf{P}^{\top} = \mathbf{I}_{N}\}$ be the set of all $N \times N$ permutation matrices. Then under the permutation of the graph Laplacian $\mathbf{L}_{\mathcal{G}}$ and node-feature matrix \mathbf{X} by any $\mathbf{P} \in \mathcal{P}$, the predictions from \mathbf{G} -NAMRFF also modifies as $\mathbf{y}_{perm} = \mathbf{P}\mathbf{y}$, where $\mathbf{y} \in \mathbb{R}^{N}$ is the predictions across all the nodes.

Robustness to perturbations:

Theorem (Robustness to perturbation of graph Laplacian). Let $\mathbf{L}_{\mathcal{G}} = \mathbf{L}_{\mathcal{G}} + \Delta \mathbf{L}_{\mathcal{G}}$ be the Laplacian of the perturbed graph, with $\|\Delta \mathbf{L}_{\mathcal{G}}\|_2 \leq \epsilon$, and assume that the RFF map $\Phi_a(.)$ is C_{RFF} -Lipschitz continuous. Then each node prediction satisfies $|\widehat{y}_i - y_i| \leq C K \epsilon D \|X\|_2$, where

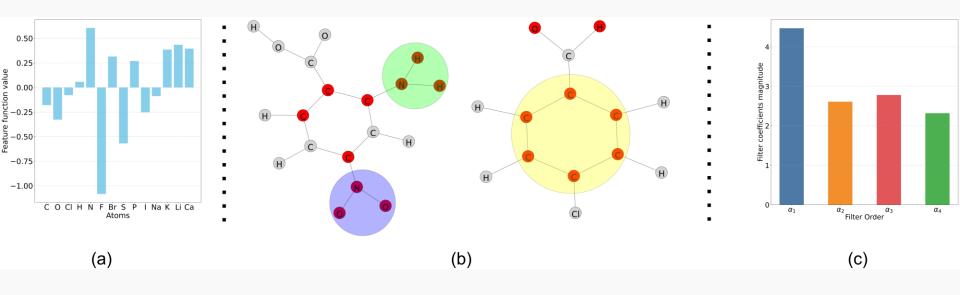
$$C = C_{RFF} \left(\max_k ||w_k||_2 \right), K = \frac{1}{4} ||\alpha||_1 (R^2 - 1) \left(\frac{R-1}{R+1} \right)^R$$
 are constants.

Pubmed dataset: Multiclass citation-network dataset where nodes are research articles categorized into three diabetes classes



Interpretability on Graph Classification Task

Mutagenicity Dataset



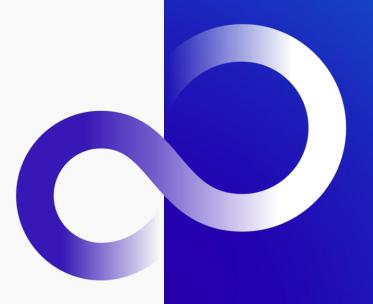
Empirical Results

Node classification task

	Model	Cora	Citeseer	Pubmed	Cornell	ogbn-arxiv	ogbn-products
	GCN [19]	81.23 ± 1.1	71.20 ± 1.7	78.50 ± 1.3	65.90 ± 0.5	71.74 ± 0.3	75.64 ± 0.3
	GAT [30]	80.32 ± 2.3	70.26 ± 2.3	77.12 ± 2.4	72.50 ± 0.7	71.95 ± 0.6	79.45 ± 0.5
	GraphSAGE [12]	79.94 ± 3.4	65.12 ± 1.9	78.25 ± 1.2	75.90 ± 5.0	71.49 ± 0.2	75.63 ± 0.3
<	Graph Transformer [37]	80.70 ± 0.5	76.00 ± 0.9	78.80 ± 1.4	70.50 ± 1.7	70.13 ± 0.5	74.74 ± 0.5
	NAM [2]	51.35 ± 2.3	55.40 ± 1.9	58.16 ± 2.3	59.15 ± 2.6	56.12 ± 3.4	OOM
	GPAM [39]	59.96 ± 3.2	60.30 ± 3.9	62.30 ± 3.7	60.12 ± 3.6	62.35 ± 4.2	60.13 ± 3.9
	GNAN [5]	77.89 ± 5.1	65.23 ± 3.7	75.13 ± 2.4	71.76 ± 4.2	69.56 ± 0.9	OOM
	G-NAMRFF ($R = 1$)	75.32 ± 1.8	67.12 ± 1.1	75.12 ± 3.8	64.12 ± 2.9	66.94 ± 1.6	55.73 ± 1.8
	G-NAMRFF	79.84 ± 1.7	69.45 ± 2.5	77.30 ± 1.4	73.54 ± 4.9	70.02 ± 3.9	72.13 ± 0.4

Graph classification task

	Model	Proteins	Mutag	Mutagenicity	NCI1	PTC
	GCN [19]	70.97 ± 4.6	68.07 ± 6.3	75.69 ± 0.9	66.35 ± 1.3	56.98 ± 5.8
	GAT [30]	69.92 ± 4.0	67.20 ± 3.4	69.40 ± 1.2	66.12 ± 2.1	55.60 ± 11.1
	GraphSAGE [12]	$67.35{\pm}2.3$	64.12 ± 2.4	69.25 ± 3.9	65.56 ± 3.9	57.12 ± 4.9
<	Graph Transformer [37]	69.76 ± 3.2	66.30 ± 5.3	73.10 ± 0.9	68.24 ± 3.4	55.90 ± 3.5
	NAM [2]	62.45 ± 4.2	63.12 ± 9.1	$67.35{\pm}2.5$	57.15 ± 1.2	54.97 ± 7.5
	GPAM [39]	65.68 ± 4.1	64.30 ± 8.4	65.46 ± 2.2	53.80 ± 2.7	52.65 ± 8.1
	GNAN [5]	59.64 ± 2.4	67.35 ± 3.9	66.64 ± 4.7	50.87 ± 1.4	55.07 ± 5.2
	G-NAMRFF (R =1)	67.83 ± 4.4	71.20 ± 6.7	68.98 ± 3.4	$63.65{\pm}2.8$	55.65 ± 5.6
	G-NAMRFF	69.94 ± 3.7	79.81 ± 5.3	71.70 ± 2.0	66.10 ± 1.7	61.91 ± 3.4



FUJITSU-CONFIDENTIAL-IN-TRUST © Fujitsu 2024