

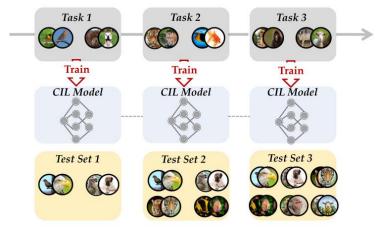
Confusion-Driven Self-Supervised Progressively Weighted Ensemble Learning for Non-Exemplar Class Incremental Learning

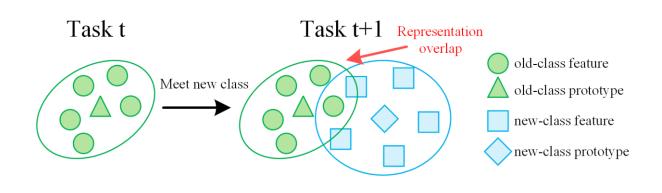
Kai Hu¹, Zhang Yu¹, Yuan Zhang¹, Zhineng Chen², Xieping Gao³

¹School of Computer Science, Xiangtan University

²Institute of Trustworthy Embodied AI, Fudan University

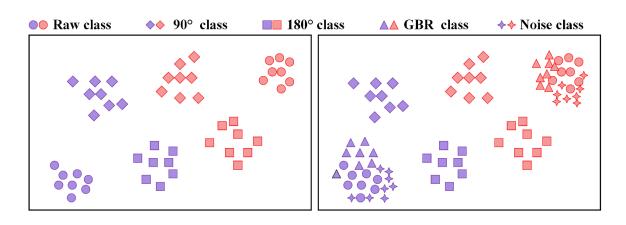
³College of Information Science and Engineering, Hunan Normal University

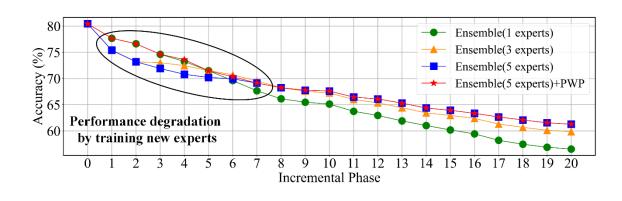



- 01 Background
- 02 Motivation
- 03 Method: CLOVER
- 04 Experiments

Background

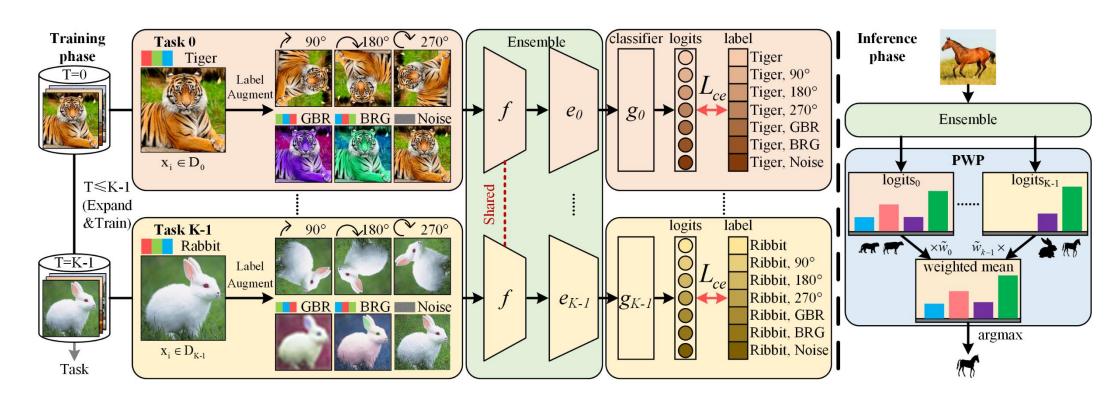
- Non-exemplar class incremental learning aims to continuously adapt to newclasses while preventing forgetting previously learned ones without retaining earlier samples
- where, in existing frozen feature extractor-based methods, the representations of new and old classes tend to exhibit substantial overlap within the feature space. This overlap limits the model' s ability to effectively distinguish between previously learned and newly introduced classes, ultimately leading to catastrophic forgetting





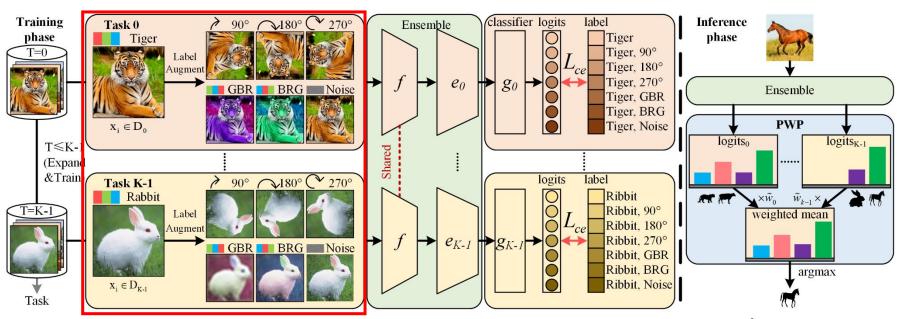
Motivation

- The overlap between new and old class representations arises from the model' s insufficient discriminative capability between them
- Existing self-supervised learning methods inadequately enhance representation discriminability
- Existing ensemble learning methods suffer from performance degradation when new experts are introduced



Method: CLOVER

Confusion-driven seLf-supervised prOgressiVely weighted Ensemble leaRning(CLOVER) for Non-Exemplar Class Incremental Learning



The pipeline of the proposed CLOVER

Method: CLOVER

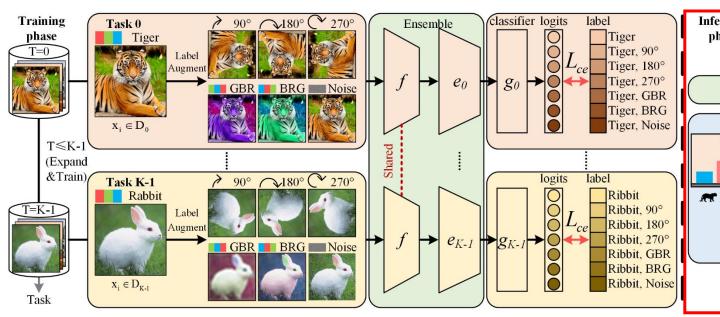
[contribution 1]: a Confusion-Driven Self-Supervised Learning method

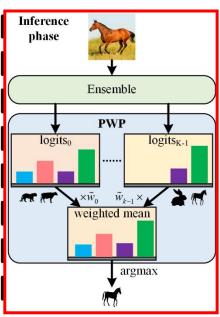
- Generate highly confusing classes
- Enhances the capability for representation extraction

The pipeline of the proposed CLOVER

$$\tilde{x}_{7i+j} = \begin{cases} x_i, & j = 0 \\ ratate(x_i, j \times 90?), & j \leq 3 \end{cases}$$

$$GBR(x_i), & j = 4, \quad L = L_{CE}(g_i(e_i(f(\tilde{x}))), \tilde{y})$$


$$BRG(x_i), & j = 5$$


$$x_i + s \times noise(0,1), & j = 6 \end{cases}$$

Method: CLOVER

• [contribution 2]: a Progressively Weighted Prediction strategy

- Mitigating the influence of unreliable experts
- Mitigating overlapping representations

$$w_{i} = \begin{cases} 1 - \sum_{j=1}^{K-1} w_{j}, & i = 0\\ \min\{\alpha + \beta \times (t - i), \frac{1}{K}\}, & i > 0 \end{cases}$$

The pipeline of the proposed CLOVER

$$l_k^c(x) = -\frac{1}{2} \left[\ln(|\Sigma_k^c|) + S \ln(2\pi) + (r_k - \mu_k^c)^T (\Sigma_k^c)^{-1} (r_k - \mu_k^c) \right]$$

$$\overline{l}(x) = \left\{ \sum_{k=0}^{M_i - 1} \widetilde{w}_k \times \overline{l}_k^i \right\}_{i=1}^{|C|} \quad \widetilde{w}_k = \frac{w_k}{\sum_{j=0}^{M_i - 1} w_j}$$

$$c = \arg\max(\overline{l}(x))$$

Quantitative evaluation

	CIFAR100				TinyImageNet				ImageNet-Subset									
Method	5 ta	ısks	10 t	asks	20 t	asks	5 ta	asks	10 t	asks	20 t	asks	5 ta	isks	10 t	asks	20 t	asks
	Avg	Last	Avg	Last	Avg	Last	Avg	Last	Avg	Last	Avg	Last	Avg	Last	Avg	Last	Avg	Last
LwF_MC [44]	45.9	36.1	27.4	17.0	20.1	15.9	29.1	17.1	23.1	12.3	17.4	8.8	34.9	24.1	31.2	20.0	27.5	17.4
PASS [9]	63.5	55.7	61.8	49.0	58.1	48.5	49.6	41.6	47.3	39.9	42.1	32.8	63.1	52.6	61.8	50.4	55.2	46.1
SSRE [10]	65.9	56.3	65.0	55.0	61.7	50.5	50.4	41.7	48.9	39.9	48.2	39.8	69.5	58.5	67.7	57.5	61.2	50.1
FeTrIL [15]	66.3	-	65.2	56.3	61.5	-	54.8	-	53.1	-	52.2	-	72.2	-	71.2	-	67.1	-
PRAKA [12]	70.0	61.6	68.9	60.4	65.9	56.2	53.3	46.4	52.6	45.2	49.8	40.6	_	-	69.0	61.3	-	-
POLO [26]	69.0	-	68.0	-	65.7	-	54.9	47.0	53.4	45.3	49.9	40.4	70.8	59.5	69.1	57.9	-	-
TASS [45]	68.8	59.3	67.4	57.9	62.8	53.8	55.1	44.1	54.2	43.9	52.8	43.6	74.3	63.1	72.6	57.9	68.8	57.6
FGKSR [41]	68.2	59.0	70.1	57.9	66.9	54.3	54.9	45.0	52.7	43.4	51.7	41.9	_	-	70.2	61.4	-	-
CEAT [40]	71.1	-	70.0	-	66.1	-	58.3	50.4	57.4	49.4	56.8	48.0	76.9	67.4	75.9	66.3	71.5	60.1
SEED* [39]	71.1	66.3	69.9	65.0	68.2	61.4	54.7	50.6	54.5	50.0	53.9	48.9	75.0	70.3	73.6	68.4	71.1	63.8
FeCAM [14]	70.9	62.1	70.8	62.1	<u>69.4</u>	58.5	<u>59.6</u>	52.8	<u>59.4</u>	52.8	59.3	52.8	78.3	70.9	78.2	70.9	75.1	66.3
CLOVER (Ours)	72.7	68.0	72.3	67.5	71.0	64.9	60.2	56.0	59.9	54.1	<u>58.5</u>	52.8	77.8	73.2	<u>77.1</u>	71.5	74.5	67.5

Comparisons of the average accuracy and last accuracy (%) at different settings on CIFAR100, TinylmageNet, and ImageNet-Subset.

Quantitative evaluation

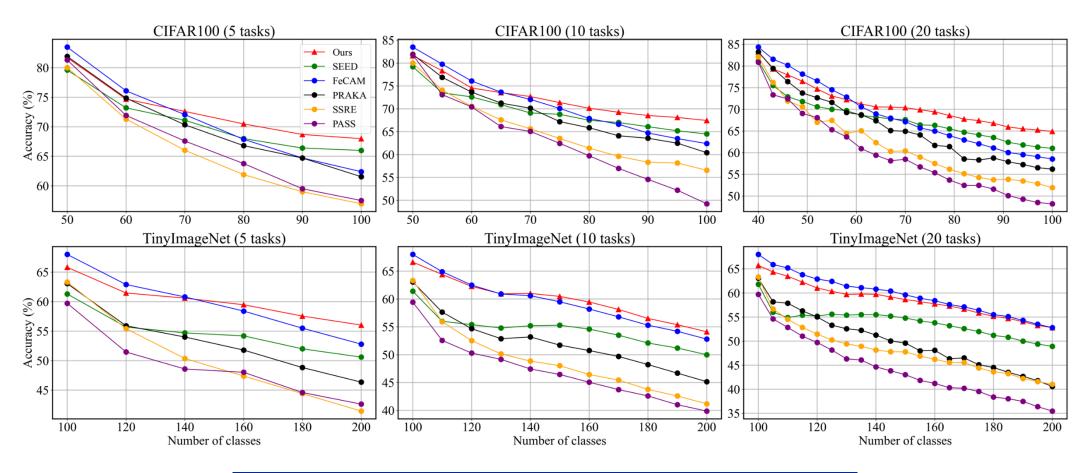
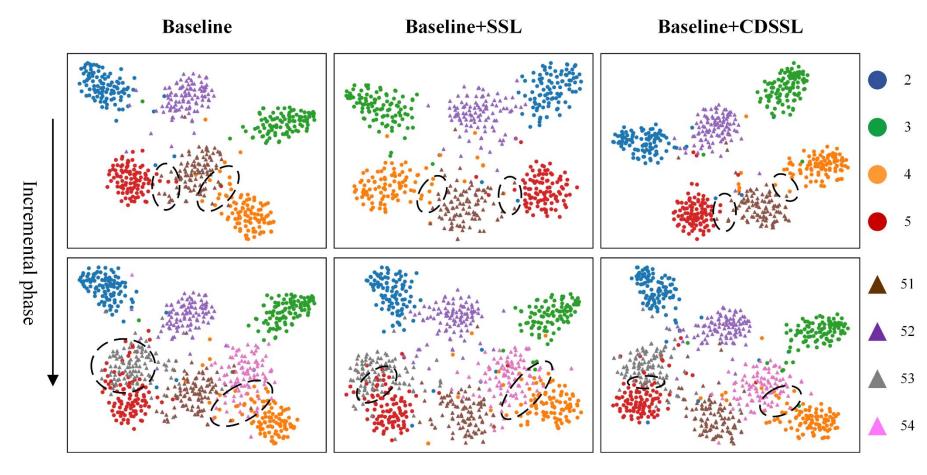
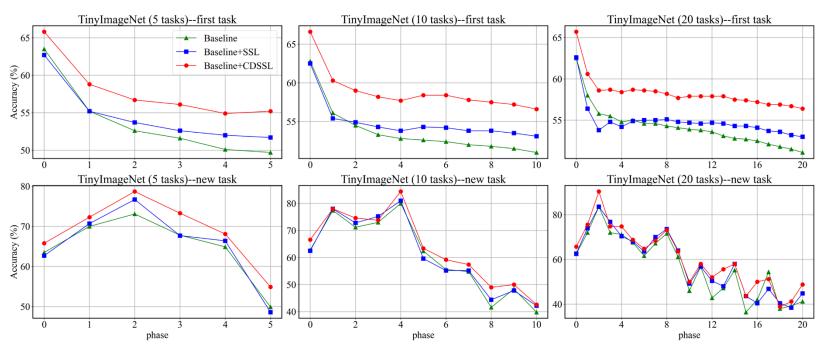



Illustration of the classification accuracy changes as tasks are being learned on CIFAR100 and TinylmageNet

Qualitative evaluation

The visualization illustrates the distribution of old and new class representations following the application of SSL and CDSSL, respectively


Ablation study

Co	C	IFAR10	00	TinyImageNet				
Baseline	CDSSL	PWP	5	10	20	5	10	20
√			69.9	69.7	67.7	56.3	55.3	54.5
\checkmark	✓		72.1	71.7	70.5	59.9	59.4	58.1
\checkmark		\checkmark	70.5	70.2	68.2	56.5	55.8	54.9
✓	\checkmark	\checkmark	72.7	72.3	71.0	60.2	59.9	58.5

	Met	hod		C	IFAR10	00	TinyImageNet			
Baseline	Rot	Color	Noise	5	10	20	5	10	20	
$\overline{\hspace{1cm}}$				69.9	69.7	67.7	56.3	55.3	54.5	
\checkmark	✓			70.7	70.8	69.2	57.2	55.9	54.9	
✓		✓		70.5	70.0	68.3	56.4	55.3	54.6	
✓			✓	70.3	69.9	68.1	56.4	55.4	54.6	
✓	✓	✓		71.6	71.3	70.1	59.2	58.3	57.2	
✓	✓		✓	71.8	71.3	70.1	59.3	58.0	57.0	
✓		✓	✓	71.1	70.3	68.5	56.7	55.6	55.0	
✓	✓	\checkmark	\checkmark	72.1	71.7	70.5	59.9	59.4	58.1	

Performance on old and new tasks

Evolution of average Bhattacharyya distance during training

<u></u>	Method		Task							
Baseline	SSL	CDSSL	0	1	2	3	4	5		
√			7.62	6.75	6.19	5.76	5.38	5.05		
\checkmark	✓		10.17	9.34	8.85	8.41	8.06	7.74		
✓		✓	12.12	11.02	10.34			8.89		

Thank you!