

NeurIPS 2025 | Spotlight

Towards a Golden Classifier-Free Guidance Path via Foresight Fixed Point Iterations

Kaibo Wang¹, Jianda Mao¹, Tong Wu¹, Yang Xiang^{1,2}

- 1. Department of Mathematics, The Hong Kong University of Science and Technology
- 2. HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute

Better text-to-image guidance



Text prompt e.g. A fierce dragon

Diffusion model + Guidance

Insight 1: Existing guidance is one-step fixed-point iteration

Better text-to-image guidance

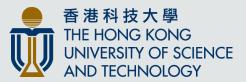


Text prompt e.g. A fierce dragon

+ Guidance

Insight 2: We upgrade it to foresight fixed-point iterations with more steps.

Background: conditional generation



Unconditional diffusion:

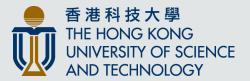
$$x_T \sim \mathcal{N}(0, I) \rightarrow \epsilon_{\theta}(x_T, t = T) \rightarrow x_{T-1} \rightarrow \cdots \rightarrow \epsilon_{\theta}(x_1, t = 1) \rightarrow x_0$$

 \triangleright Conditional diffusion (adds condition c as an input):

$$x_T \sim \mathcal{N}(0, I) \rightarrow \epsilon_{\theta}(x_T, c, t = T) \rightarrow x_{T-1} \rightarrow \cdots \rightarrow \epsilon_{\theta}(x_1, c, t = 1) \rightarrow x_0$$

Due to the sparsity of the conditional data, the model tends to underfit.

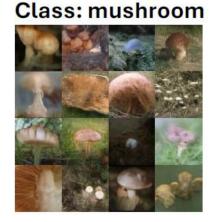
Background: classifier-free guidance



Classifier-free guidance (CFG):

$$\epsilon_{CFG}^{\gamma} = \epsilon(x_t, t, \emptyset) + \gamma [\epsilon(x_t, t, c) - \epsilon(x_t, t, \emptyset)] \qquad \gamma > 1$$

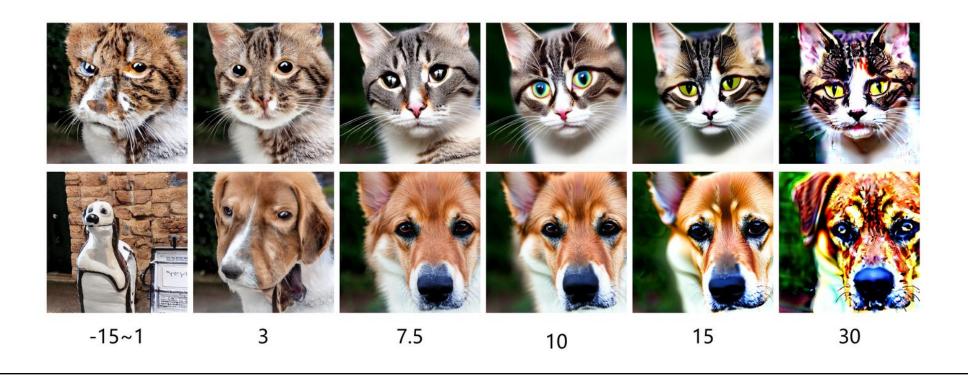
Naïve conditional samples



CFG Samples

CFG amplifies the difference between conditional and unconditional outputs

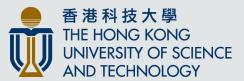
Background: Cons of CFG



CFG improves quality, but reduces diversity and oversaturate with increasing γ

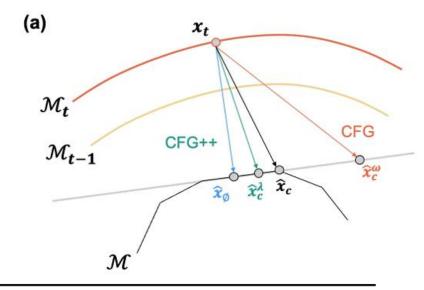
Better CFG: given prediction $e^{u/c}(x_t)$, what's better update $x_{t-1} = h(x_t, e^u(x_t), e^c(x_t))$?

Related works: improving CFG



Target: Off-manifold phenomenon of CFG

Route: inverse problem sampling



Algorithm 1 Reverse Diffusion with CFG

Require: $\boldsymbol{x}_T \sim \mathcal{N}(0, \mathbf{I}_d), 0 \leq \boldsymbol{\omega} \in \mathbb{R}$

1: **for**
$$i = T$$
 to 1 **do**

2:
$$\hat{\boldsymbol{\epsilon}}_{\boldsymbol{c}}^{\omega}(\boldsymbol{x}_t) = \hat{\boldsymbol{\epsilon}}_{\varnothing}(\boldsymbol{x}_t) + \omega[\hat{\boldsymbol{\epsilon}}_{\boldsymbol{c}}(\boldsymbol{x}_t) - \hat{\boldsymbol{\epsilon}}_{\varnothing}(\boldsymbol{x}_t)]$$

3:
$$\hat{\boldsymbol{x}}_{\boldsymbol{c}}^{\omega}(\boldsymbol{x}_t) \leftarrow (\boldsymbol{x}_t - \sqrt{1 - \bar{\alpha}_t} \hat{\boldsymbol{\epsilon}}_{\boldsymbol{c}}^{\omega}(\boldsymbol{x}_t)) / \sqrt{\bar{\alpha}_t}$$

4:
$$\mathbf{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \hat{\mathbf{x}}_{\mathbf{c}}^{\omega}(\mathbf{x}_t) + \sqrt{1 - \bar{\alpha}_{t-1}} \hat{\boldsymbol{\epsilon}}_{\mathbf{c}}^{\omega}(\mathbf{x}_t)$$

5: end for

6: return x_0

Algorithm 2 Reverse Diffusion with CFG++

Require:
$$\boldsymbol{x}_T \sim \mathcal{N}(0, \mathbf{I}_d), \lambda \in [0, 1]$$

1: **for**
$$i = T$$
 to 1 **do**

$$\hat{\boldsymbol{\epsilon}}_{\boldsymbol{c}}^{\omega}(\boldsymbol{x}_{t}) = \hat{\boldsymbol{\epsilon}}_{\varnothing}(\boldsymbol{x}_{t}) + \underline{\omega}[\hat{\boldsymbol{\epsilon}}_{\boldsymbol{c}}(\boldsymbol{x}_{t}) - \hat{\boldsymbol{\epsilon}}_{\varnothing}(\boldsymbol{x}_{t})]$$

$$\hat{\boldsymbol{\epsilon}}_{\boldsymbol{c}}^{\omega}(\boldsymbol{x}_{t}) \leftarrow (\boldsymbol{x}_{t} - \sqrt{1 - \bar{\alpha}_{t}}\hat{\boldsymbol{\epsilon}}_{\boldsymbol{c}}^{\omega}(\boldsymbol{x}_{t}))/\sqrt{\bar{\alpha}_{t}}$$

$$3: \hat{\boldsymbol{\epsilon}}_{\boldsymbol{c}}^{\lambda}(\boldsymbol{x}_{t}) \leftarrow (\boldsymbol{x}_{t} - \sqrt{1 - \bar{\alpha}_{t}}\hat{\boldsymbol{\epsilon}}_{\boldsymbol{c}}^{\omega}(\boldsymbol{x}_{t}))/\sqrt{\bar{\alpha}_{t}}$$

3:
$$\hat{\boldsymbol{x}}_{\boldsymbol{c}}^{\lambda}(\boldsymbol{x}_t) \leftarrow (\boldsymbol{x}_t - \sqrt{1 - \bar{\alpha}_t} \hat{\boldsymbol{\epsilon}}_{\boldsymbol{c}}^{\lambda}(\boldsymbol{x}_t)) / \sqrt{\bar{\alpha}_t}$$

4:
$$\mathbf{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \hat{\mathbf{x}}_{\mathbf{c}}^{\lambda}(\mathbf{x}_t) + \sqrt{1 - \bar{\alpha}_{t-1}} \hat{\boldsymbol{\epsilon}}_{\varnothing}(\mathbf{x}_t)$$

5: end for

6: return x_0

Related works: improving CFG



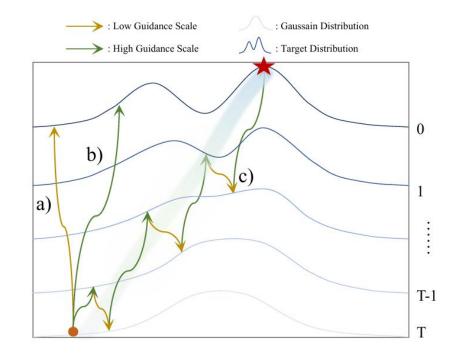
> Z-Sampling <u>2412.10891</u>

Target: Semantic injection in CFG is insufficient.

Route: Backward-forward in each step x_t

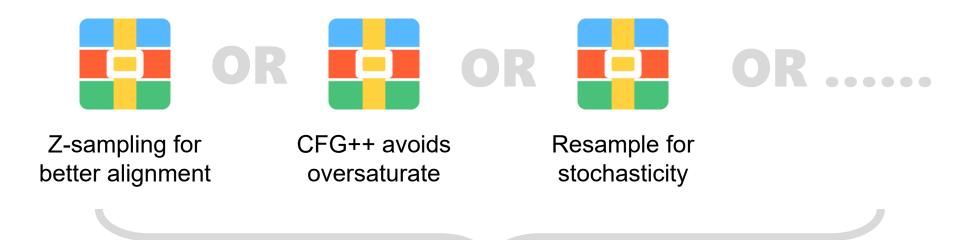
- 1. ODE backward to x_{t+1} with ϵ^{\emptyset}
- 2. ODE forward to \hat{x}_t with ϵ^{γ} (CFG with γ)
- Resample <u>2201.09865</u>

Diff: Backward with noising function



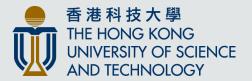
Guidance design

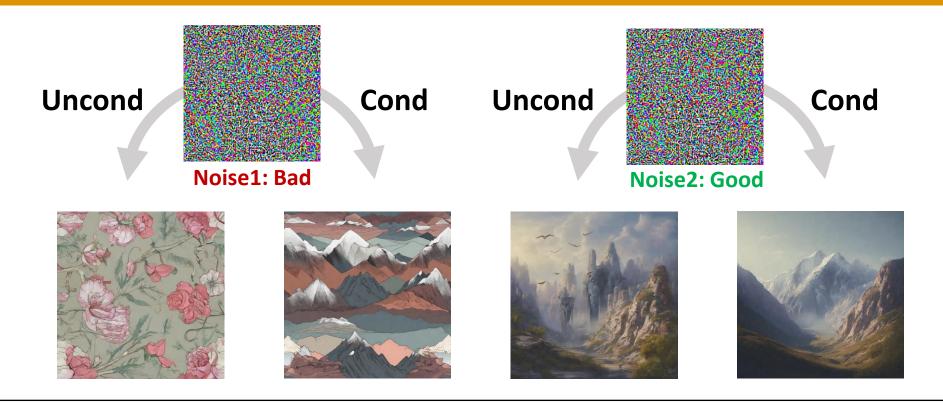
Different methods become a tightly coupled package



How can we systematically explore the design space for guidance and develop more effective algorithms from a unified framework?

Golden path hypothesis





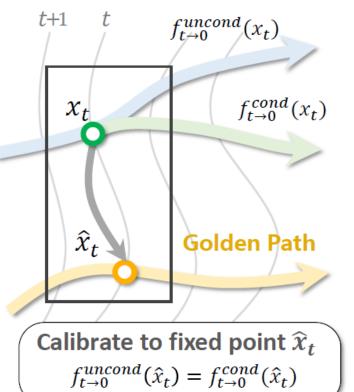
Key Observation: If \hat{x}_t unconditionally generates image of mountains $f_{t\to 0}^u(\hat{x}_t)$, it performs better on mountain-related prompts than other x_t .

Golden path via fixed point iterations

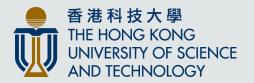
- **Problem:** Given t and initial value x_t , find \hat{x}_t such that $f_{t\to 0}^u(\hat{x}_t) = f_{t\to 0}^c(\hat{x}_t)$ $f_{t\to 0}^{u/c}(\hat{x}_t)$ denotes denotes (un)conditional denoising function from x_t to x_0 using DDIM (ODE)
- ➤ Intuition: When cond. and uncond. produce different outputs, the model requires a sharp turn.
- > Solver: Fixed point iteration framework

$$\hat{x}_t = F^{(K)}(x_t) = F \circ \cdots \circ F(x_t)$$
 > Calibrate
 $x_{t-1} = \text{Sampler}(\hat{x}_t, \epsilon^u(\hat{x}_t))$ > Denoise

Existing guidance can be unified into the framework



Design space of fixed point iterations



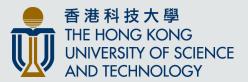
- 1. Consistency interval $f_{a\to b}^u(\hat{x}_t) = f_{a\to b}^c(\hat{x}_t)$ (Pursuing $t\to 0$ is too difficult)
- 2. Fixed point operator F, $F(\hat{x}_t) = \hat{x}_t \Rightarrow f_{a \to b}^u(\hat{x}_t) = f_{a \to b}^c(\hat{x}_t)$

e.g., linear:
$$x_t = x_t + w(f_{a \to b}^u(x_t) - f_{a \to b}^c(x_t))$$
, backward-forward: $x_t = f_{a \to b}^{u_{-1}} f_{a \to b}^c(x_t)$

- 3. Guidance strength/scheduler e.g. $w\xi_t$
- 4. Number of iterations *K*

Methods	Fixed point operator $F(x_t)$	Interval	Iters.
CFG	$x_t - w\xi_t[\epsilon^c(x_t) - \epsilon^u(x_t)]$	$t \to t-1$	1
CFG++	$x_t - \lambda \tilde{\xi}_t [\epsilon^c(x_t) - \epsilon^u(x_t)]$	$t \to t-1$	1
Z-sampling	$(\mathrm{id} - w\xi_t \Delta \epsilon) \circ f_{t+1 \to t}^{\gamma} \circ f_{t \to t+1}^{u}(x_t)$	$t+1 \to t-1$	1
Resampling	$(\mathrm{id} - w\xi_t \Delta \epsilon) \circ f_{t+1 \to t}^{\gamma} \circ n_{t \to t+1}(x_t)$	$t+1 \to t-1$	N
FSG (ours)	$ (\mathrm{id} - \lambda \tilde{\xi}_t \Delta \epsilon) \circ f^u_{t-\Delta t \to t} \circ f^{\gamma}_{t \to t-\Delta t}(x_t) $	$t \to t - \Delta t$	N

Comparison of design choices

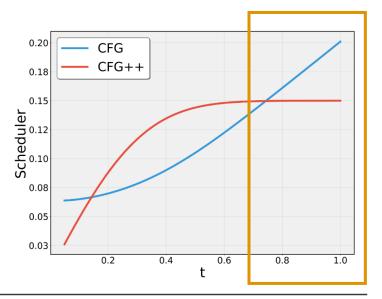


> Scheduler (difference of CFG & CFG++):

During the critical early stages of generation, the scheduler of CFG++ provides more stable guidance

Fixed point operator:

Forward-backward operators with longer intervals exhibit lower empirical contraction rates (ℓ_2 norm)



Operators	t=0.2	0.4	0.6	0.8
id - $w_t \Delta \epsilon$ (CFG, CFG++)	1.00	1.00	1.00	1.00
$f_{t+dt \rightarrow t}^{\gamma} \circ f_{t \rightarrow t+dt}^{u}$ (Z-sampling)	1.04	0.99	0.97	0.99
$f_{t+dt \rightarrow t}^{\gamma} \circ n_{t \rightarrow t+dt}^{u}$ (Resample)	0.89	0.97	1.03	1.07
$f^u_{t/2 \to t} \circ f^{\gamma}_{t \to t/2}$	1.03	0.95	0.96	0.98
$f^u_{t/4 \to t} \circ f^\gamma_{t \to t/4}$	0.61	0.91	0.88	0.91
$f^u_{0 \to t} \circ f^\gamma_{t \to 0}$	0.62	0.70	0.75	0.79

Foresight guidance

We adopt scheduler of CFG++ and Forward-backward operator

Three modifications:

- 1. More iterations
- 2. Use longer consistency interval

$$f_{t\to t-\Delta t}^{u}(\hat{x}_t) = f_{t\to t-\Delta t}^{c}(\hat{x}_t)$$

3. Prioritize fixed point iterations and longer intervals in the early stages

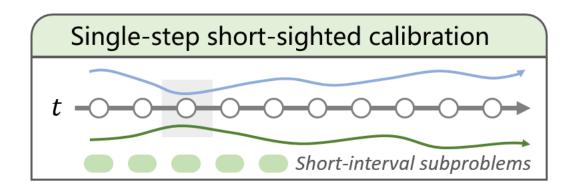
FSG will not add computational overhead.

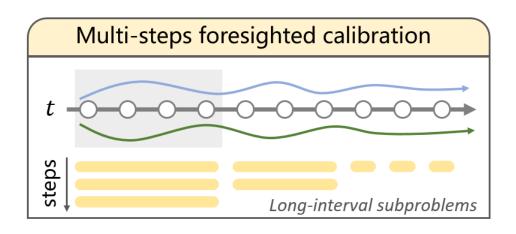
```
Algorithm 1: Foresight Guidance (FSG) Sampling
    Input: Initial noise x_T, Condition c, Timesteps T, Iteration
                set S = \{(t_i, K_i, \Delta t_i)\}_{i=1}^M, Strengths \gamma, \lambda.
    Output: Generated image x_0
 1 for t \leftarrow T to 1 do
          \hat{x}_t = x_t;
         if (t, K, \Delta t) \in \mathcal{S} then
                Foresight Fixed Point Calibration:
               for k \leftarrow 1 to K do
                     \overline{x'_{t-\Delta t} = f_{t\to t-\Delta t}^{\gamma}(\hat{x}_t; c)};
                     x'_t = f^u_{t-\Delta t \to t}(x'_{t-\Delta t});
         end
          CFG++ Calibration;
10
         \hat{x}_t = x_t - \lambda \tilde{\xi}_t (\epsilon^c(x_t) - \epsilon^u(x_t));
11
          Denoising Step;
12
          x_{t-1} = \text{Sampler}(\hat{x}_t, \epsilon^u(\hat{x}_t));
14 end
15 return x_0
```

Subproblem decomposition

For the consistency of the entire trajectory, we can

- **1. Short interval subproblem:** Solving the $f_{t\to t-1}^c(x_t)=f_{t\to t-1}^u(x_t)$ in a single iteration
- **2. Long interval subproblem:** Solving the $f_{t\to t-\Delta t}^c(x_t) = f_{t\to t-\Delta t}^u(x_t)$ through multi-step iterations Intuitively, multi-step iteration can impose stronger consistency at both ends of the entire trajectory.





Theoretical analysis

Theorem 1. Given the total iteration budget N and timesteps T, uniformly divide $f_{T\to 0}^u = f_{T\to 0}^c$ into M subproblems ($f_{iT/M\to(i-1)T/M}^u = f_{iT/M\to(i-1)T/M}^c$, $i\in[M]$), each solved with N/M fixed point iterations. Let $\mathcal{L}=\frac{1}{T}\sum_{t=1}^T \|\epsilon^c(\hat{x}_t)-\epsilon^u(\hat{x}_t)\|_2^2$ denote the average gap over calibrated trajectories $\hat{x}_t\in\mathbb{R}^d$, with B as the Euclidean norm bound for \hat{x}_t and $\epsilon^{c/u}(\hat{x}_t)$, L as the smoothness constant of $\epsilon^{c/u}(\cdot)$, and $r\in(0,1)$ as the upper bound of the contraction rate of i, $i\in[M]$. Under mild assumptions, there exists a constant C>0 such that

$$\mathcal{L} = \frac{1}{T} \sum_{t=1}^{T} \| \epsilon^{c}(\hat{x}_{t}) - \epsilon^{u}(\hat{x}_{t}) \|_{2}^{2} \le B^{2} \left(Cr^{\frac{2N}{M}} + \frac{2L^{2}}{M^{2}} \right).$$

When the model is smoother, the strategy with longer intervals and more iterations proves superior When resources are sufficient, tend towards strategy with shorter intervals and single iteration

Quantitative Analysis



FSG enhance aesthetics and alignment

CFG/CFG++ benefit from increased iterations (\times 2 / 3)

Datasets		DrawE	Bench			Pick-a	-Pic		
Method	NFE	IR↑	HPSv2↑	AES↑	CLIP↑	IR↑	HPSv2↑	AES↑	CLIP↑
CFG	50	59.02	28.73	6.07	32.29	82.14	28.46	6.73	33.53
CFG++	50	65.21	28.98	6.08	32.60	89.75	28.72	6.67	33.86
Z-Sampling	50	72.75	29.08	6.00	32.59	96.77	28.68	6.59	33.97
Resampling	50	59.99	28.80	5.99	32.21	82.65	28.46	6.61	33.46
FSG (ours)	50	82.81	29.42	6.01	32.65	98.59	28.89	6.60	34.32
CFG×2	100	77.71	29.36	6.06	32.44	96.06	28.84	6.64	34.13
$CFG++\times 2$	100	79.42	29.42	6.01	32.61	99.90	29.00	6.61	34.18
Z-Sampling	100	77.46	29.26	6.03	32.39	94.98	28.79	6.61	34.01
Resampling	100	77.26	29.12	6.00	32.46	79.36	28.61	6.02	33.61
FSG (ours)	100	84.12	29.54	6.02	32.76	102.82	29.05	6.66	34.30
CFG×3	150	83.56	29.51	5.95	32.66	102.13	29.04	6.61	34.28
$CFG++\times 3$	150	82.58	29.45	5.93	32.66	103.32	29.05	6.57	34.20
Z-Sampling	150	78.35	29.40	6.06	32.43	97.25	28.90	6.67	34.20
Resampling	150	79.98	29.23	6.05	32.32	87.48	28.70	6.59	33.49
FSG (ours)	150	88.18	29.44	5.96	32.70	104.86	29.04	6.65	34.28

Quantitative Analysis

FSG and CFG(++) \times 3 improve fine-grained instruction compliance

Method	Overall†	Single Object↑	Two Object↑	Counting [†]	Colors†	Position ↑	Color Attribution
CFG	48.39 %	97.50 %	61.62 %	22.50 %	78.72 %	14.00 %	16.00 %
CFG×3	55.94 %	98.75 %	75.76 %	40.00 %	85.11 %	8.00 %	28.00 %
$CFG++\times 3$	56.03 %	97.50 %	78.79 %	45.00 %	81.91 %	10.00 %	23.00 %
Z-sampling	56.70 %	100.00 %	75.76 %	46.25 %	86.17 %	12.00 %	20.00 %
Resampling	56.65 %	100.00 %	84.85 %	40.00 %	84.04 %	7.00 %	24.00 %
FSG (ours)	57.95 %	100.00 %	79.80 %	43.75 %	86.17 %	12.00 %	28.00 %

Our framework easily extend to other models and sampler

Models		SD-2.1,	DDIM		Hu	ınyuan-Di	T, DDI	M		SDXL,	DDPM	
Method	IR↑	HPSv2↑	AES ↑	CLIP↑	IR↑	HPSv2↑	AES ↑	CLIP↑	IR↑	HPSv2↑	AES ↑	CLIP↑
CFG	-62.83	25.51	5.88	30.38	115.63	29.00	6.82	33.09	73.57	28.42	6.73	33.62
CFG ×3	1.08	27.25	5.92	32.50	115.32	28.98	6.50	32.88	91.37	28.69	6.62	33.73
$CFG++\times 3$	3.98	27.24	5.96	32.51	115.63	29.03	6.63	32.97	89.17	28.79	6.60	33.60
Z -sampling	3.65	27.24	6.07	32.60	128.72	29.23	6.72	33.42	90.35	28.63	6.65	33.58
Resampling	8.07	27.03	5.85	32.31	117.65	29.28	6.73	33.18	90.92	28.64	6.65	33.73
FSG (ours)	16.26	27.60	6.10	32.80	132.88	29.37	6.68	33.48	91.53	28.56	6.65	33.79

Qualitative analysis



Prompts:

A bowl of soup that looks like a monster with tofu says deep learning

↑ Prompt details and text

Five frosted glass bottles

↑ Counting

A cat in a space suit walking on the moon

↑ Image details

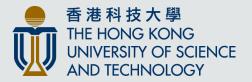
A storefront with <u>'Google</u> <u>Research Pizza Cafe'</u> written on it.

↑ Long text

<u>One computer</u> technical sketch white background

↑ Prompt alignment

Combination with orthogonal methods



FSG can achieve "1+1>2" gains when combined with noise optimization / preference-aligned models

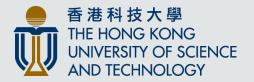
Better initial values for fixed-point iteration

Methods	IR ↑	HPSv2 ↑	AES ↑	CLIP ↑
Standard (CFG)	82.14	28.46	6.73	33.53
+NPNet	91.66	28.60	6.70	33.57
FSG50	98.59	28.89	6.60	34.32
FSG100	102.82	29.05	6.66	34.30
FSG50+NPNet	112.64	29.04	6.54	34.09
${\tt FSG100+NPNet}$	111.83	29.15	6.57	34.13

Method	$\operatorname{IR}\!\!\uparrow$	HPSv2↑	AES↑	CLIP↑
CFG50	82.14	28.46	6.73	33.53
FSG100	102.82	29.05	6.66	34.30
SPO	111.86	29.08	6.91	33.22
+FSG50	115.86	29.16	6.91	33.12
+FSG100	117.93	29.20	6.93	33.24
+FSG150	116.49	28.74	6.85	33.30

SPO + FSG100

Conclusion



- We propose fixed point iteration as unified guidance framework with broader design applicability.
- We unified existing CFG and its variants as short-sighted single-step approaches.
- ➤ We present Foresight Guidance (FSG), a multi-step iteration paradigm with longer interval, achieving enhanced alignment-quality balance.

Code: https://github.com/Ka1b0/Foresight-Guidance