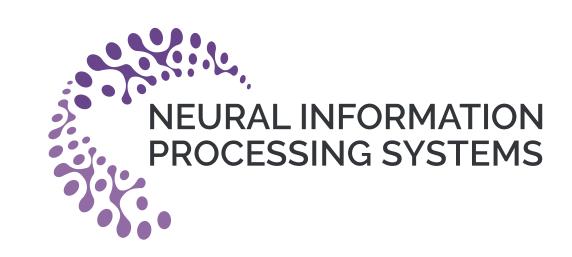
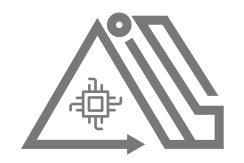
FALQON: Accelerating LoRA Fine-tuning with Low-Bit Floating-Point Arithmetic

Kanghyun Choi, Hyeyoon Lee, SunJong Park, Dain Kwon, Jinho Lee

Department of Electrical and Computer Engineering Seoul National University

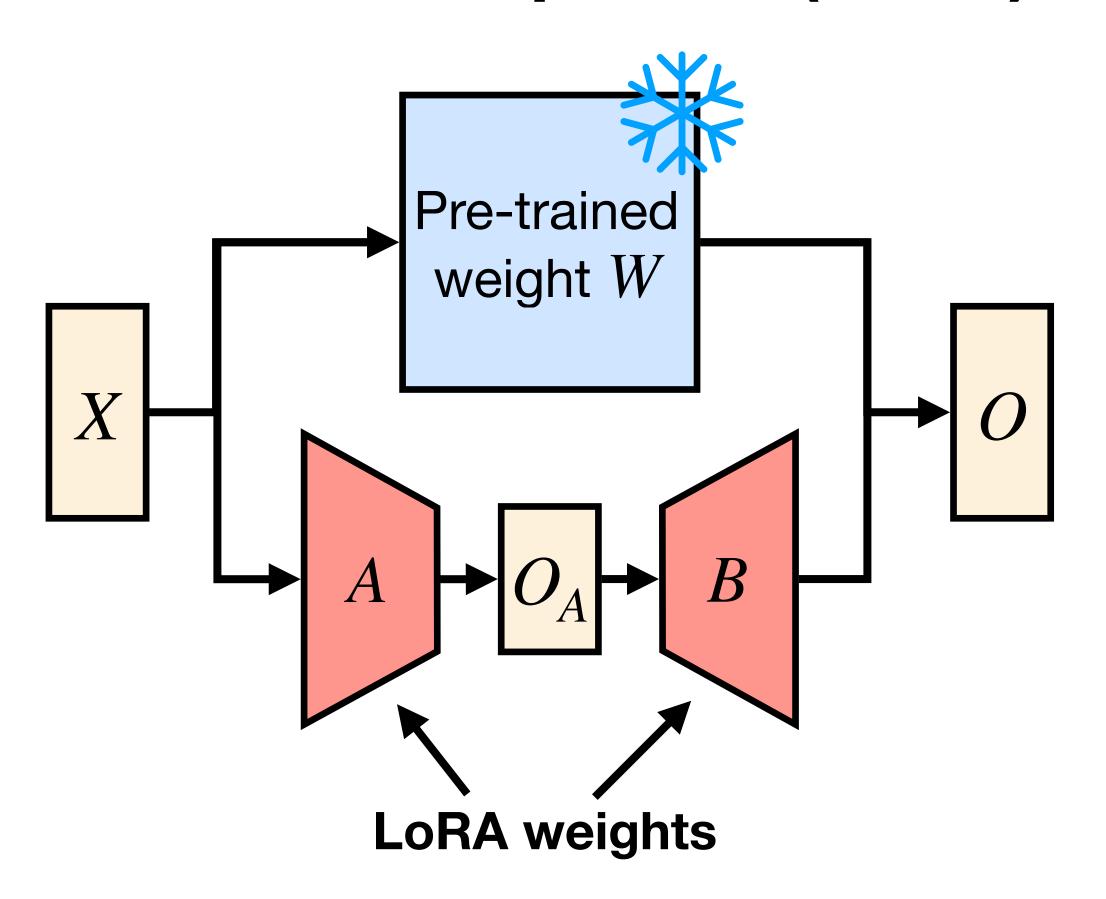
NeurlPS 2025





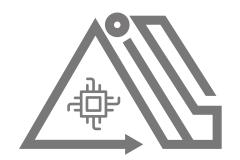
Backgrounds

Low-Rank Adaptation (LoRA)



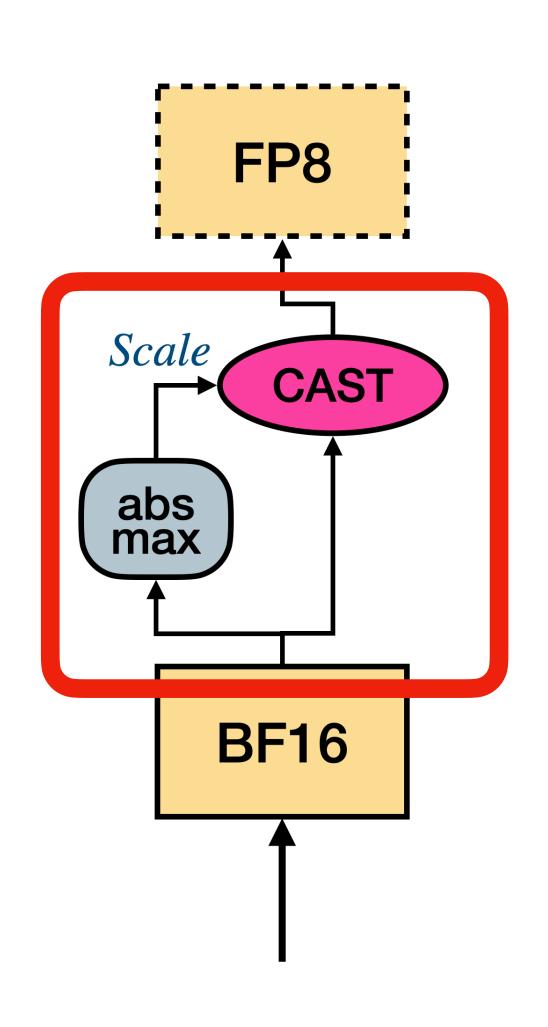
- Low-rank adaptation (LoRA)
 - Freeze pre-trained weights
 - Train LoRA weights only
 - Reduce memory consumption of gradient and optimizer state

$$W_{FT} = W_{orig} + \Delta W \approx W_{orig} + BA$$
 weight low-rank update projection (LoRA)

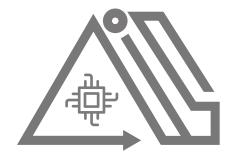


Backgrounds

FP8 Quantization in Linear Layer

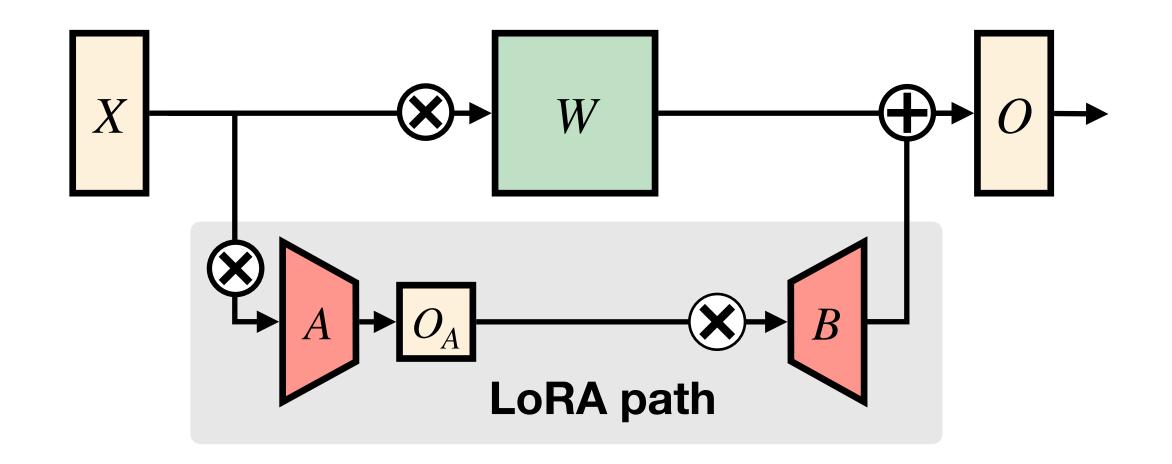


- FP8 quantization (conversion) requires scaling
 - Calculate absolute max (amax) for scaling
 - For quantization,
 we need a reduction for amax and scaling
 - For small-dimensional MatMul,
 the overhead exceeds the speed up

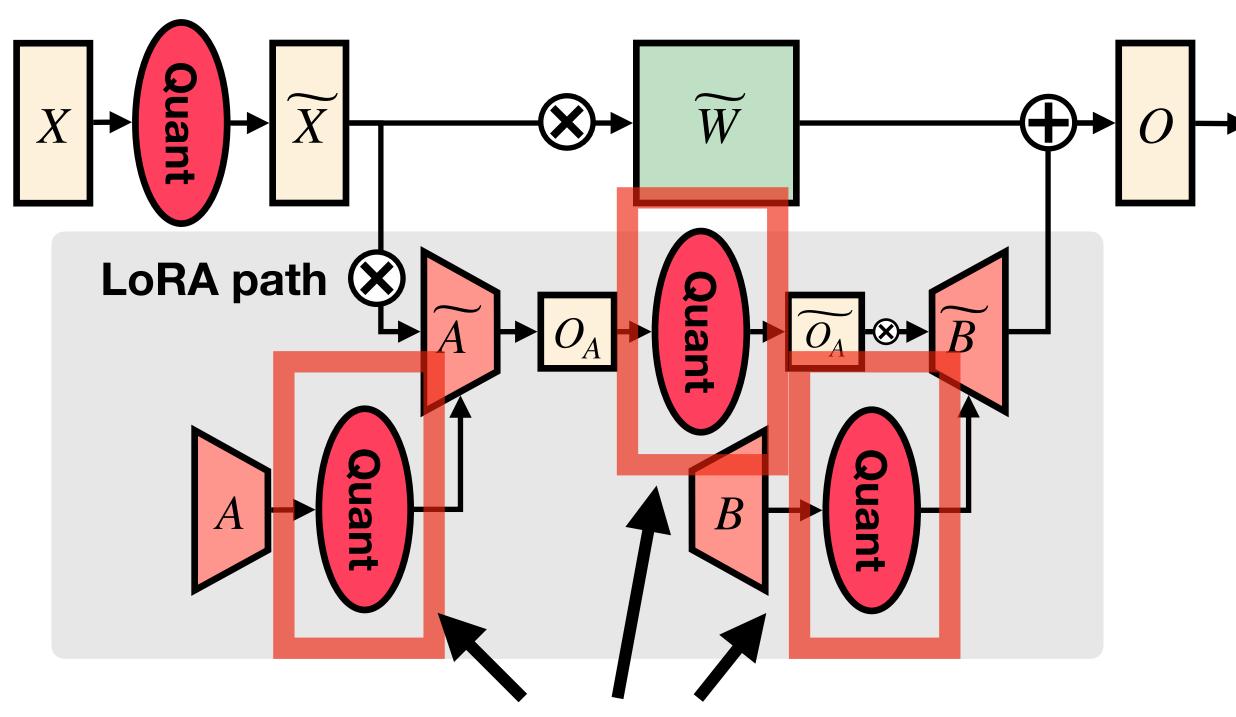


Motivational Study

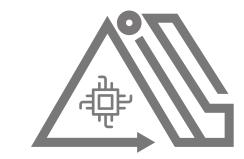
Quantization Overhead of LoRA Layers



FP8 (Quantization)



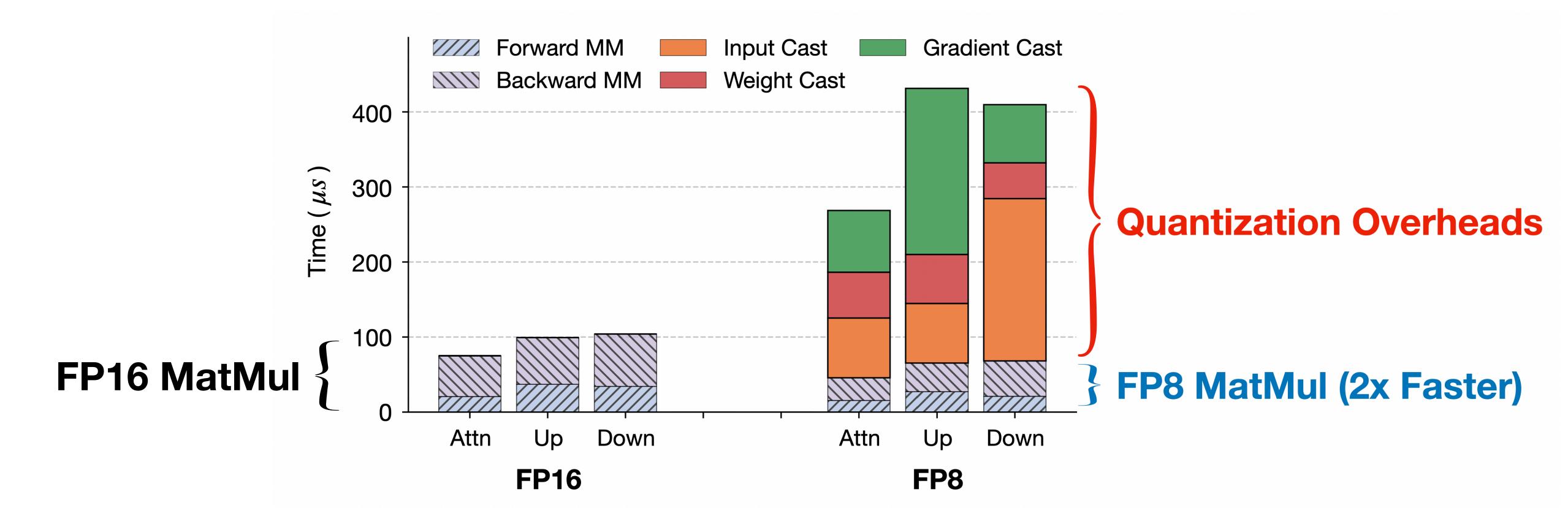
Quantization overhead from LoRA path

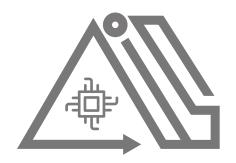


Motivational Study

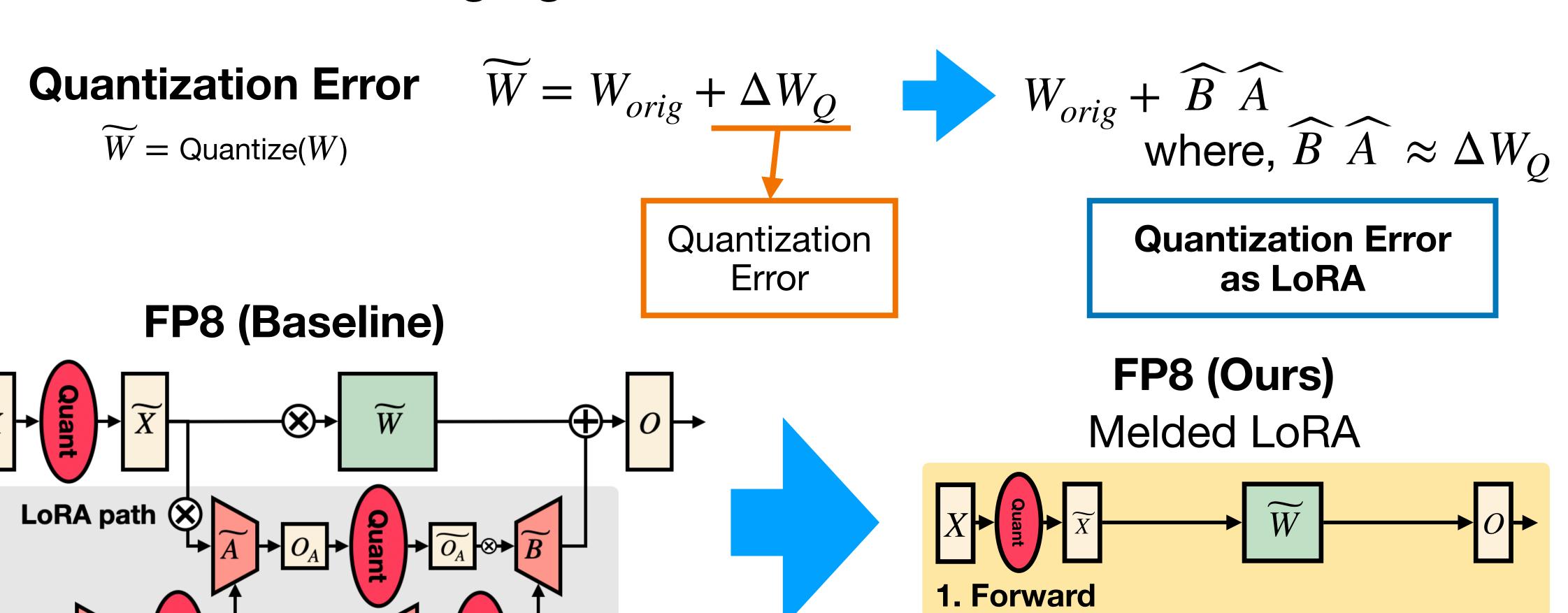
FP8 Quantization Overhead of LoRA Layers

Problem: Current FP8 framework suffer from quantization overhead on LoRA Research Goal: Design a low-overhead FP8 framework for LoRA

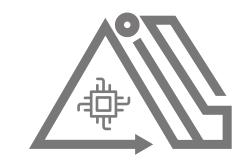




1) Melded LoRA: Merging backbone and LoRA for Forward



No separate LoRA path



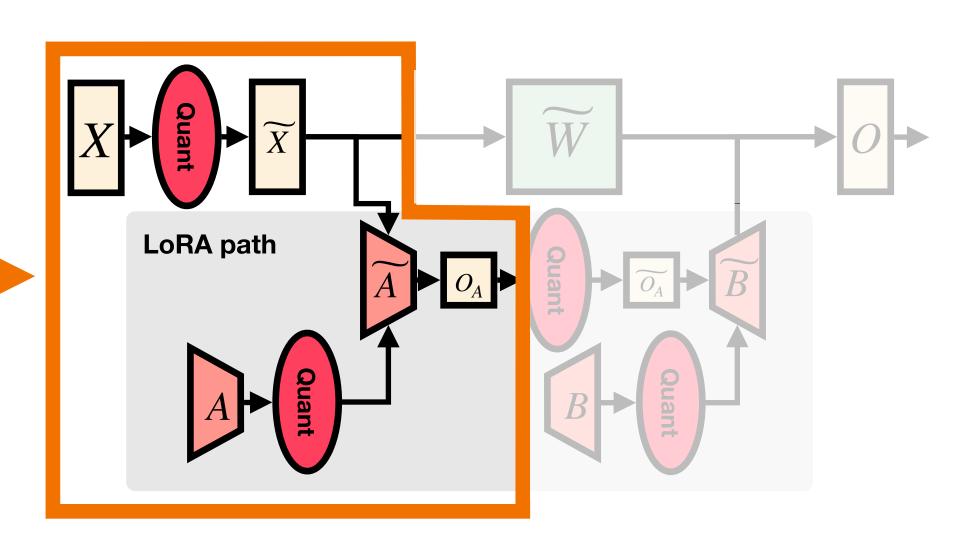
2) Efficient Gradient Computation for Melded LoRA

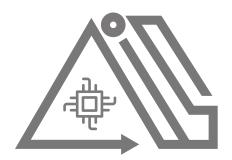
For backward:

- (1) We freeze the A matrix
- (2) Compute gradient of B matrix

$$\frac{\partial \mathcal{L}}{\partial B} = \frac{\partial \mathcal{L}}{\partial O} x^{\mathsf{T}} A^{\mathsf{T}} = \frac{\partial \mathcal{L}}{\partial O} (Ax)^{\mathsf{T}}$$

Naive Ax computation yields further overhead





2) Efficient Gradient Computation for Melded LoRA

For backward:

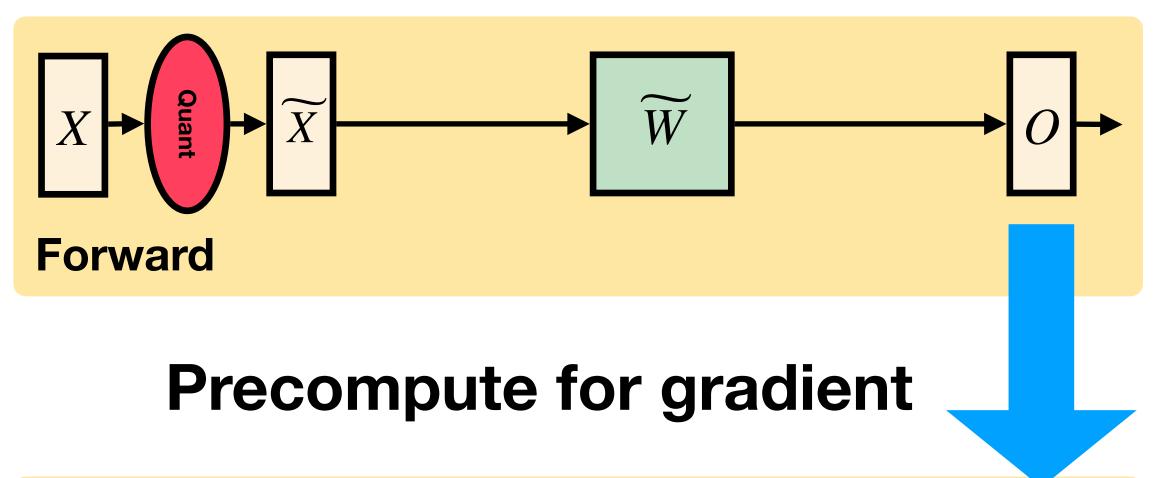
- (1) We freeze the A matrix
- (2) Compute gradient of B matrix

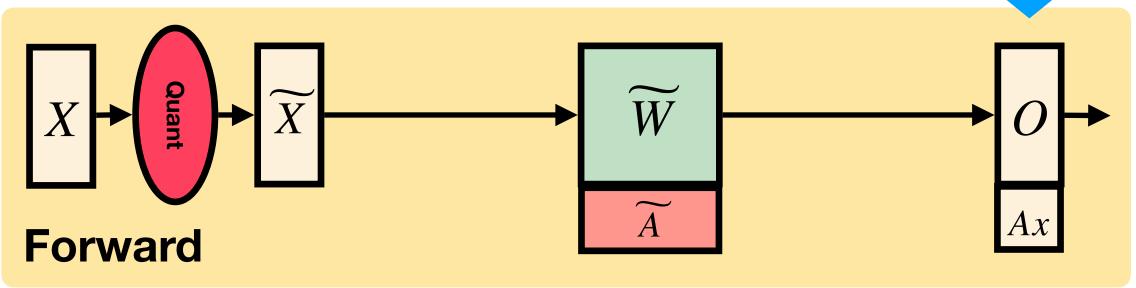
$$\frac{\partial \mathcal{L}}{\partial B} = \frac{\partial \mathcal{L}}{\partial O} x^{\mathsf{T}} A^{\mathsf{T}} = \frac{\partial \mathcal{L}}{\partial O} (Ax)^{\mathsf{T}}$$

(2)-1 Merge A matrix to W:

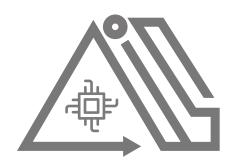
$$\widetilde{W}' = \left| \begin{array}{c} \widetilde{W} \\ \widetilde{A} \end{array} \right| \in \mathbb{R}^{(m+r) \times n}$$

(2)-2 Precompute Ax in forward: $\widetilde{W}'\widetilde{x} = \begin{bmatrix} O \\ Ax \end{bmatrix} \in \mathbb{R}^{(m+r)\times d}$



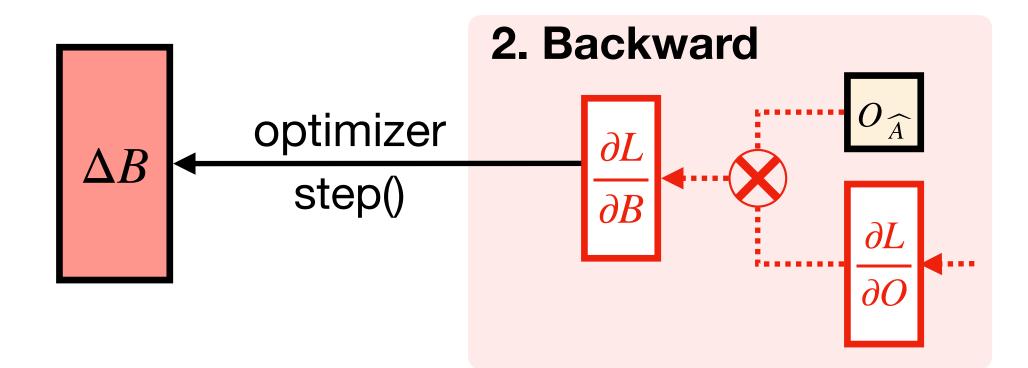


$$\begin{bmatrix} O \\ Ax \end{bmatrix} \in \mathbb{R}^{(m+r)\times d}$$

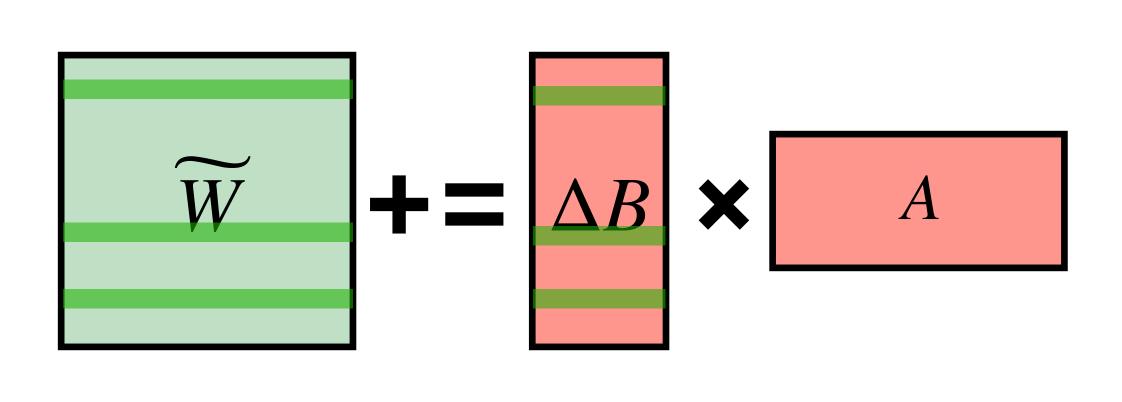


3) Row-wise Update of Quantized Weights

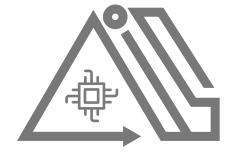
- ΔB uffer: store updates of B
 - Initialized to a zero-matrix



- Top-K Row-wise Update
 - Small updates cannot exceed quantization-grid
 - Apply large update rows only

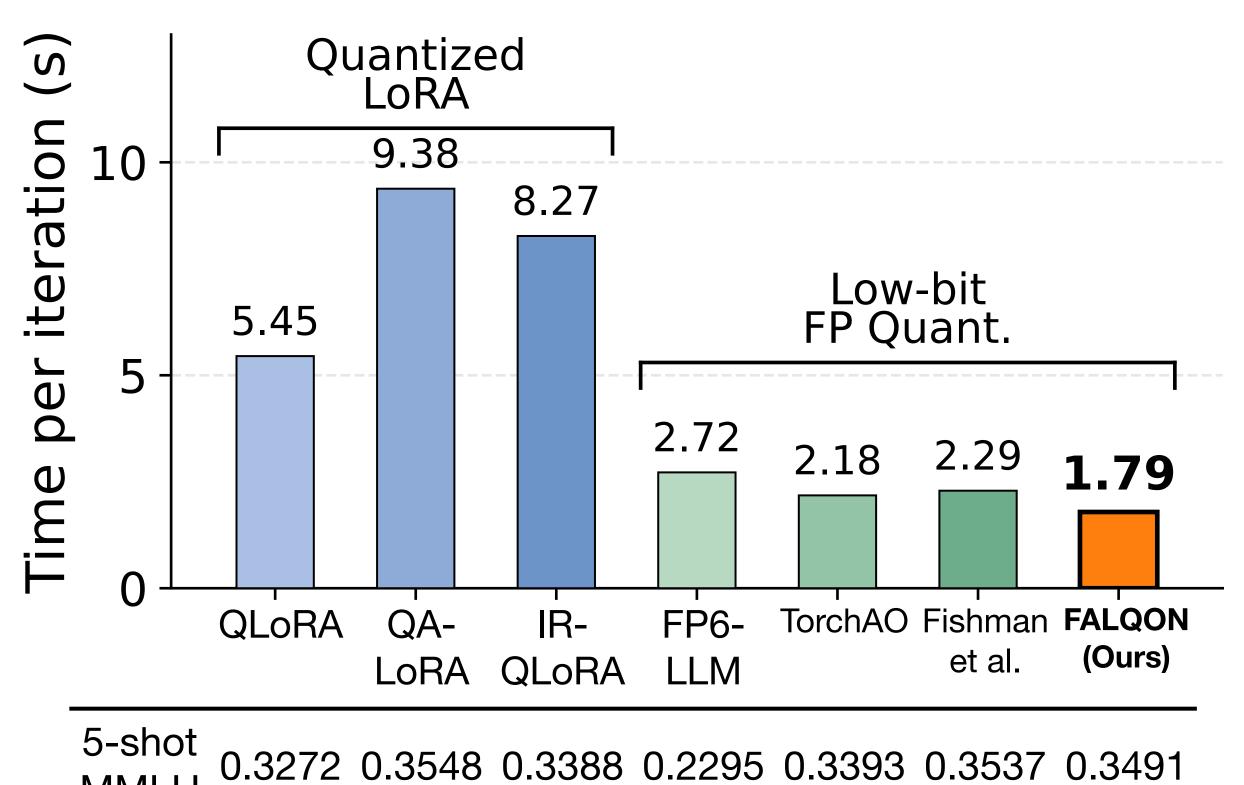


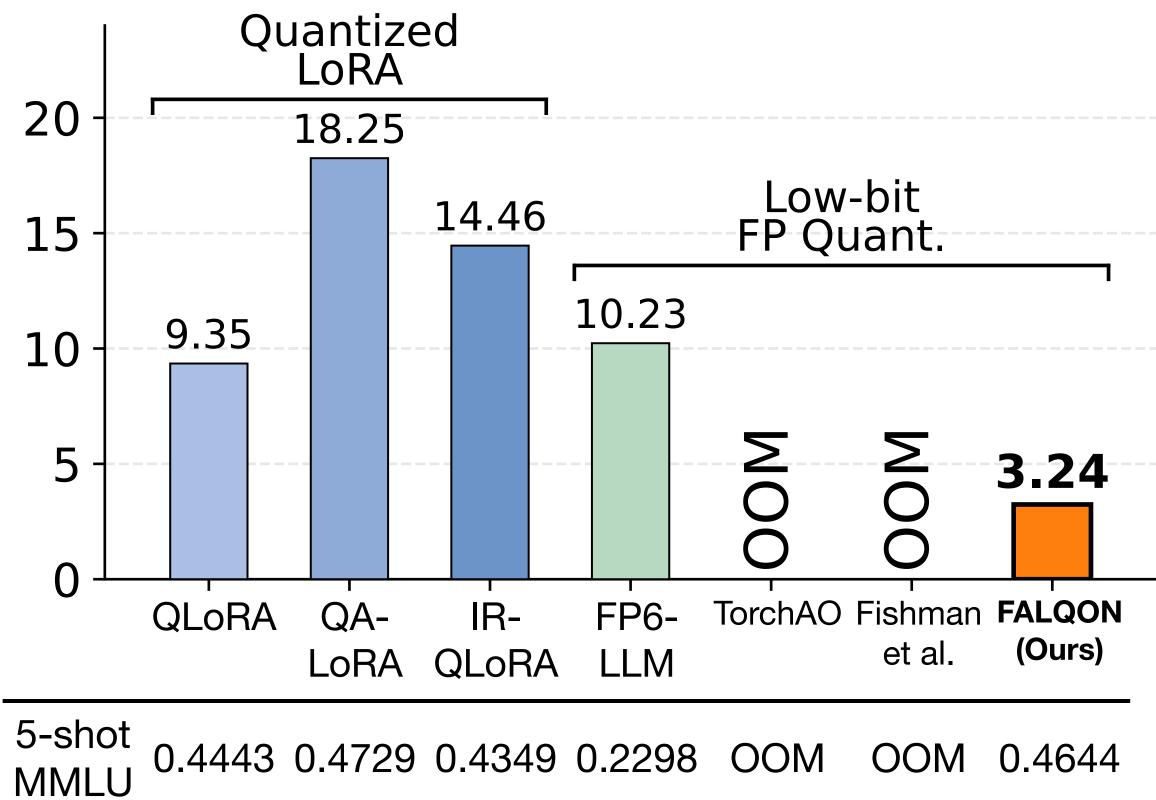
$$W[K]$$
 $+$ ΔB \star A



Evaluation

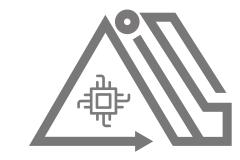
MMLU





LLaMA-7B

LLaMA-13B



Conclusion

- We show that existing FP8 quantization methods incur substantial overhead with small-dimensional LoRA adapters.
- We propose FALQON, which merges the LoRA adapter in the quantized backbone and significantly reduces quantization overhead.
- FALQON achieves up to three times speedup over existing quantized LoRA methods.