

HeteroTissue-Diffuse

Semantic and Visual Crop-Guided Diffusion Models for Heterogeneous Tissue Image Synthesis

Saghir Alfasly

Wataru Uegami

Enamul Hoq

Ghazal Alabtah

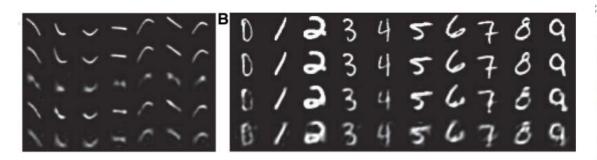
Hamid Tizhoosh

KIMIA Lab, Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA

VISUAL GENERATIVE MODELS IN GENERAL DOMAIN

Visual generative model advancement

2013



2025

Sora v2

Veo v3

VISUAL GENERATIVE MODELS IN GENERAL DOMAIN

- Autoencoders and Denoising Autoencoders became popular for unsupervised feature learning.
- Variational Autoencoders (VAEs)
- GAN
- Hybrid VAE–GAN
- Autoregressive Models e.g., PixelRNN
- Diffusion Models Revolution
 - DDPM (Denoising Diffusion Probabilistic Models)
 - Stable Diffusion / Imagen / DALL-E 2
 - Video & Multimodal Diffusion (e.g., SORA, Runway Gen-3, Veo)

Histopathology image analysis faces critical challenges:

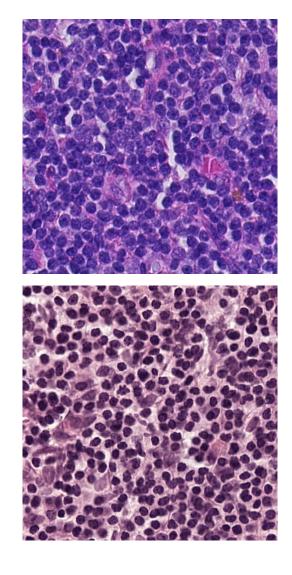
- Data scarcity
- Data privacy
- Annotation cost

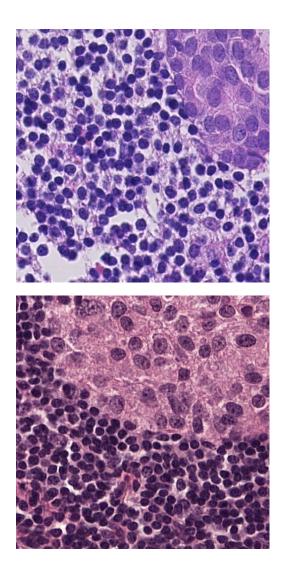
Histopathology image generation faces critical challenges:

CHALLENGES

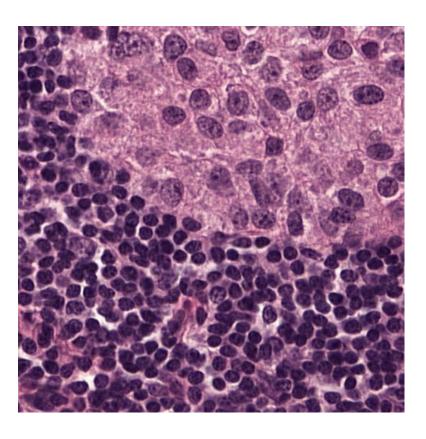
- Limited ability to synthesize heterogeneous tissue samples
- Difficulty preserving diagnostically relevant features
- Difficult to maintain consistency across magnification levels
- Text-based prompting introduces interobserver variability
- Embedding-based approaches lose critical morphological details

• Limited ability to synthesize heterogeneous tissue samples

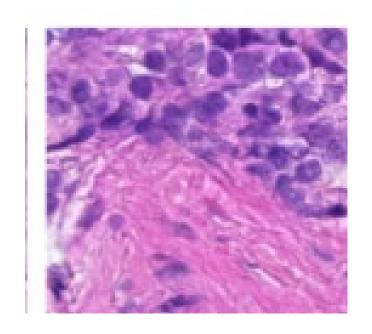


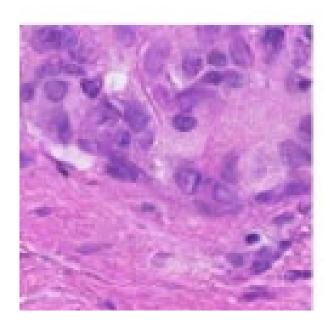


• Difficulty preserving diagnostically relevant features

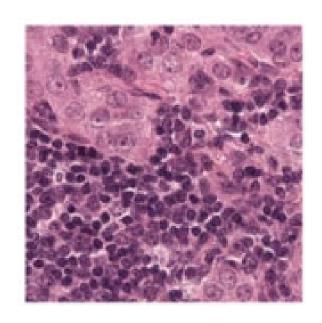


• Text-based prompting introduces interobserver variability and limits the tissue nature diversity

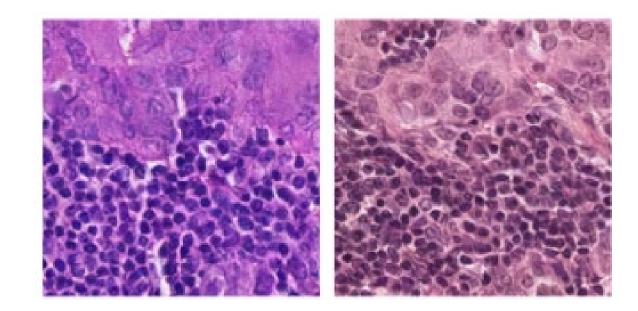




Embedding-based approaches lose critical morphological details



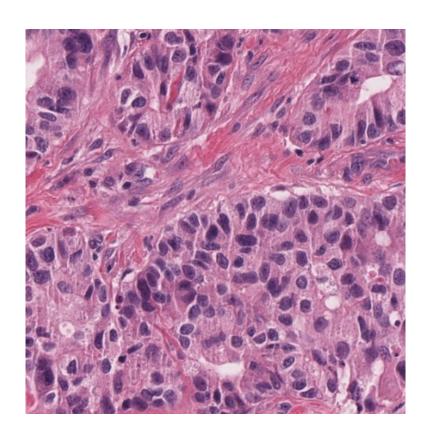
Reference

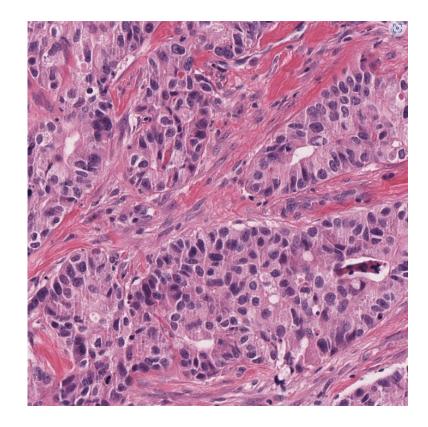


Embedding Prompt

target

Difficult to maintain consistency across magnification levels





OUR SOLUTION (OVERVIEW)

A new dual-conditioning latent diffusion model that:

- 1. Combines **semantic maps** with tissue-specific **visual crops**
- 2. Preserves morphological fidelity and diagnostic features
- 3. Enables precise **region-specific** generation control
- 4. Scales to **unannotated datasets** through self-supervision

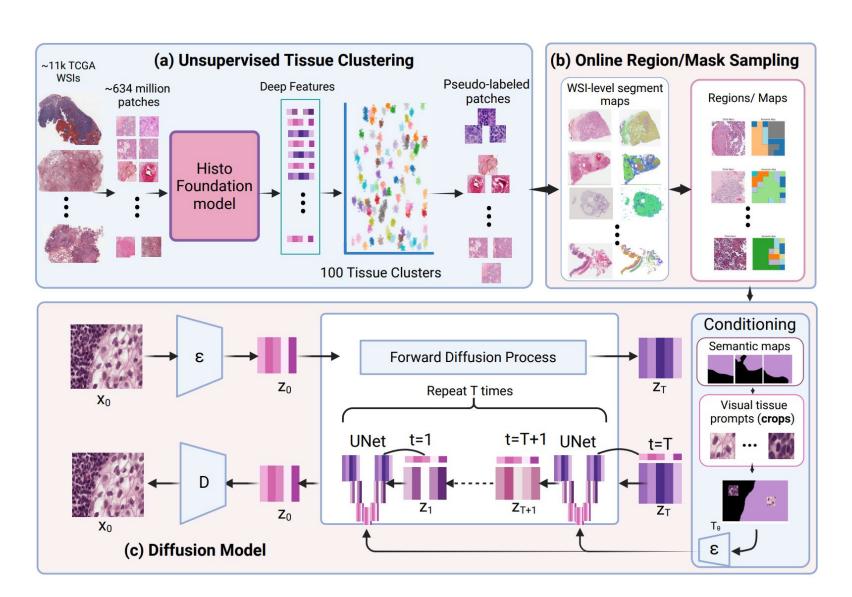
KEY CONTRIBUTIONS

- 1. Dual-conditioning architecture: Semantic maps + raw tissue crops
- 2. Self-supervised framework: For unannotated WSIs (TCGA dataset)
- 3. Comprehensive validation: Quantitative metrics + pathologist evaluation

HETEROTISSUE-DIFFUSE FRAMEWORK

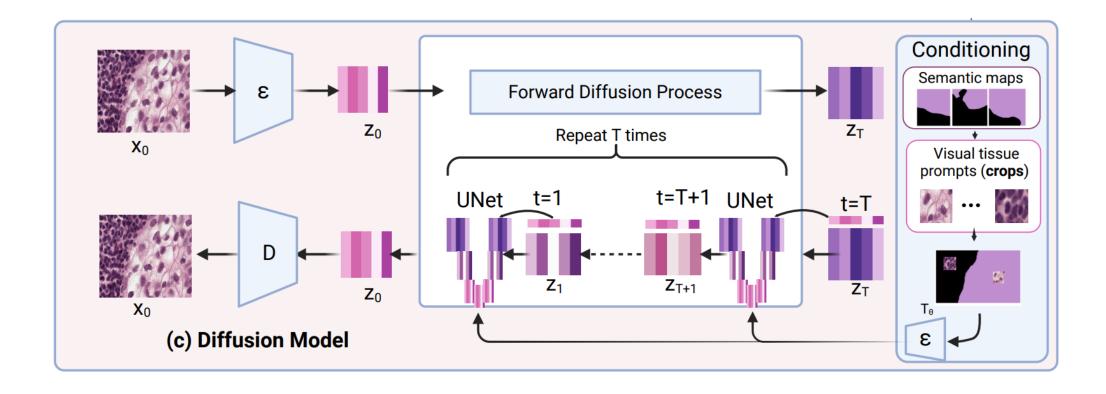
Data sampling for training

Model training



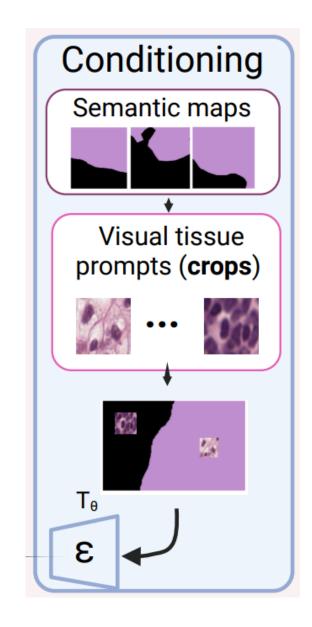
HETEROTISSUE-DIFFUSE FRAMEWORK

HeteoTissue-Diffuse training framework



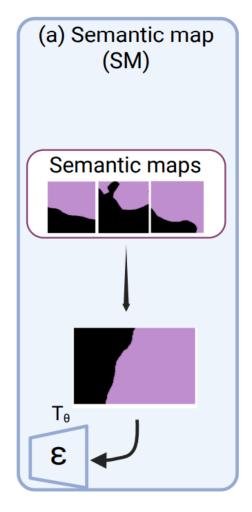
DUAL-CONDITIONING MECHANISM

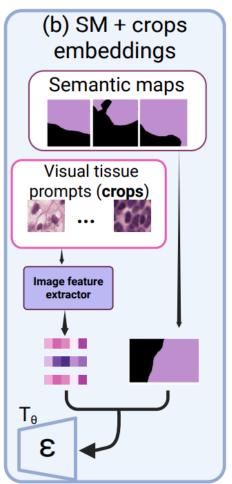
- Combines spatial precision with morphological authenticity:
 - Semantic maps provide region boundaries and tissue type locations
 - Visual crops preserve cellular texture, staining, morphology
 - Conditioning signal: concatenate semantic map and crops

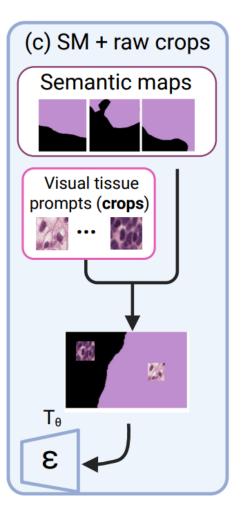


DUAL-CONDITIONING MECHANISM

Different variations of conditions (prompts)

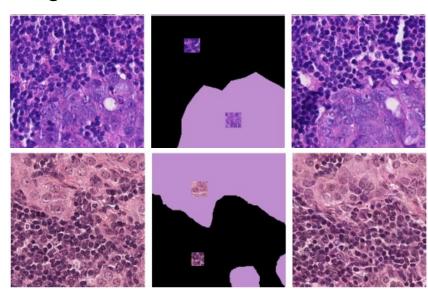






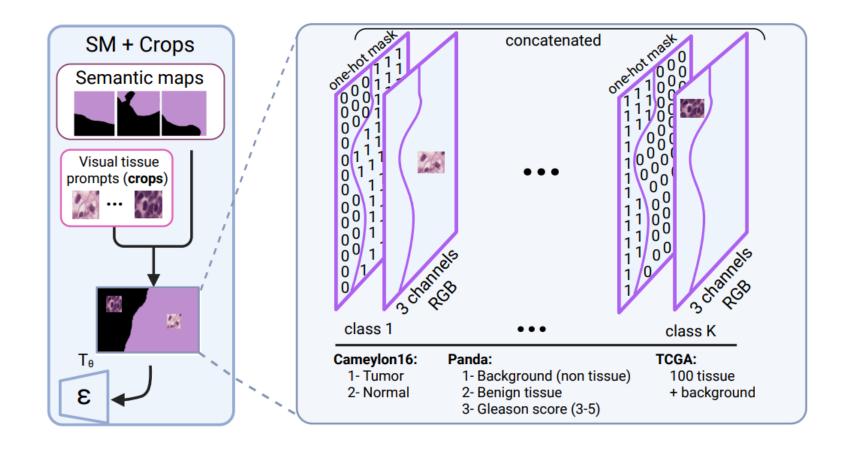
ALGORITHM: HETEROGENEOUS PATCH SAMPLING

- Sample patches where tissue ratios (tumor/normal) in [0.2, 0.8] range
- For each class present in segmentation mask:
 - Extract **square crop** from region of that class
 - Apply optional augmentations (rotation/flipping)
 - Place crop at valid location within semantic region
- Results in training sample with both image and conditional inputs

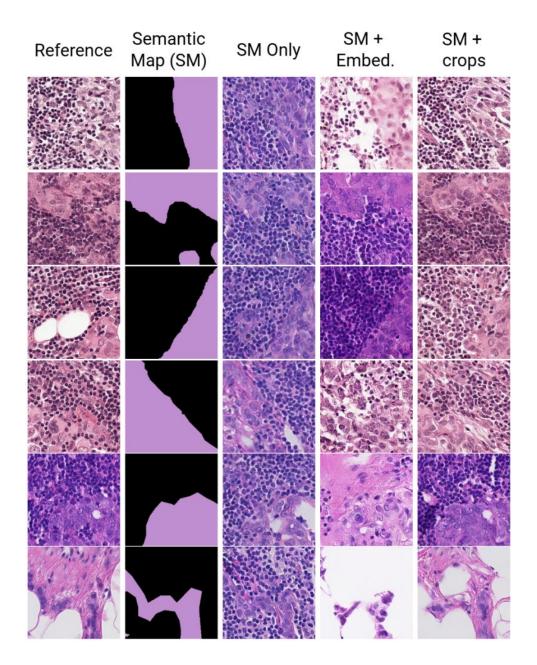


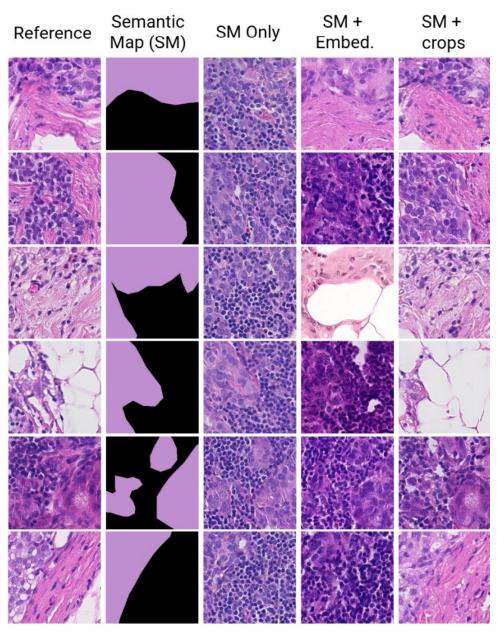
DUAL-CONDITIONING MECHANISM

Technical details: dual-condition construction



RESULTS Generated Samples





Quantitative Results: Frechet Distance **RESULTS**

- Key findings: **6× reduction** in FD on Camelyon16 with prompts $(430.1 \rightarrow 72.0)$
- 2-3× lower FD across Panda and TCGA datasets
- Visual prompts consistently outperform embedding-based conditioning
- Different foundation model encoders show varying sensitivity to conditioning
- RN50-BT and DINOv2 ViT-L show greatest improvement with prompts

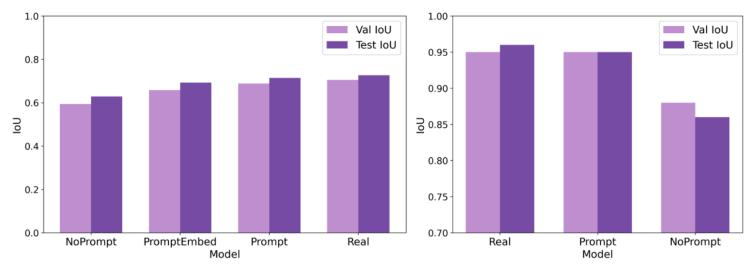
Table 1: FD Results for Prompt, Nonprompt, and crop embedding prompt conditions across CAME-LYON16 [5], PANDA [7], and TCGA [38] datasets

Dataset	Cond.	Lunit-8	GigaPath	H-Optimus	PathDino	RN50-BT	DINOv2	UNI2	UNI
		[18]	[39]	[31]	[3]	[18]	[27]	[10]	[10]
	NP	1360.9	714.0	713.9	7540.6	430.1	122.0	139.8	70.0
CAM16	Emb. Prompt	991.3	606.6	664.7	4331.1	183.0	289.6	141.6	841.1
	Prompt	629.1	353.0	425.2	2591.5	72.0	52.7	85.2	481.4
PANDA	NP	877.8	347.3	422.2	5124.7	150.0	352.4	113.6	650.5
FANDA	Prompt	512.2	139.7	227.1	3230.9	22.8	61.4	52.4	299.9
TCGA	NP	855.1	360.4	476.0	4306.7	157.7	117.5	119.6	563.6
	Prompt	821.9	346.1	521.4	3876.7	142.9	142.1	135.1	527.9

RESULTS Downstream Evaluation: Segmentation

- DeepLabv3+ models trained on synthetic data achieve:
 - 0.71 IoU on Camelyon16 (real data: 0.72)
 - 0.95 IoU on Panda (real data: 0.96)
 - Only 1-2% gap from real data training
- Models trained solely on our synthetic data approach real-data performance
- NoPrompt (i.e., semantic maps only) synthetic data shows **lower performance** (0.63, 0.86)
- Visual prompts critical for downstream task effectiveness

Data	Cam16	Panda
NoPrompt	0.63	0.86
PromptEmbed	0.69	0.88
Prompt	0.71	0.95
Real	0.72	0.96



(a) DeepLabv3+ performance on real/synthetic (Camelyon16)

(b) DeepLabv3+ performance on real/synthetic (Panda)

RESULTS Pathologist Evaluation

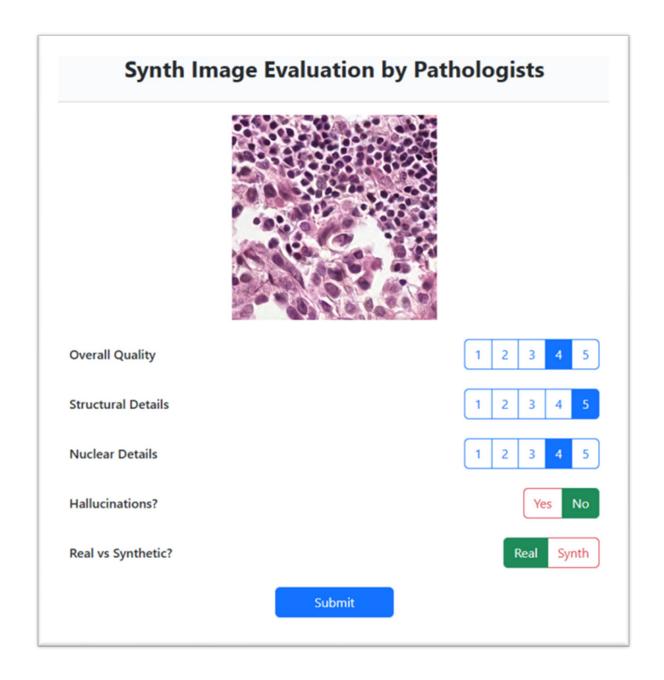
A certified pathologist with seven years of clinical experience in surgical pathology

Quantitative metrics

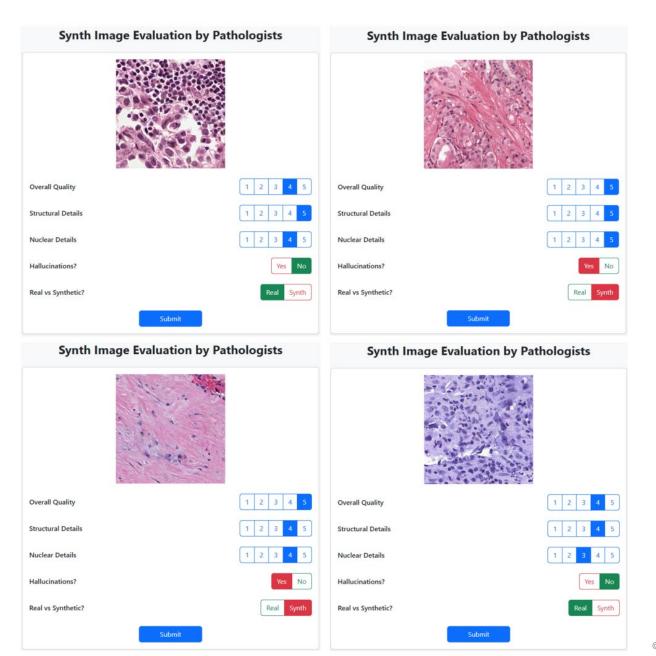
- **Overall Quality**
- Structural Detail
- **Nuclear Detail**

Two binary assessments

- Prediction of hallucination
- Image authenticity (real versus synthetic classification)



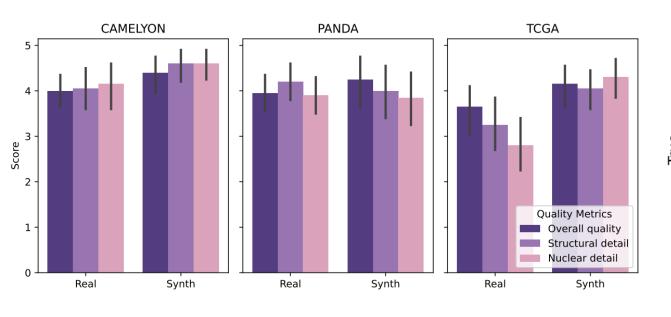
RESULTS Pathologist Evaluation

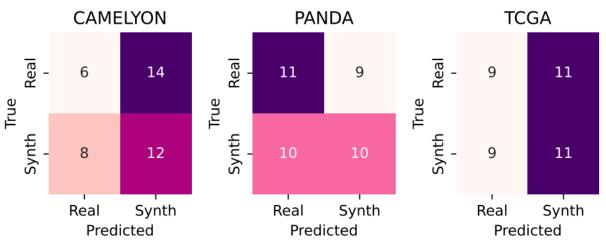


Pathologist Evaluation **RESULTS**

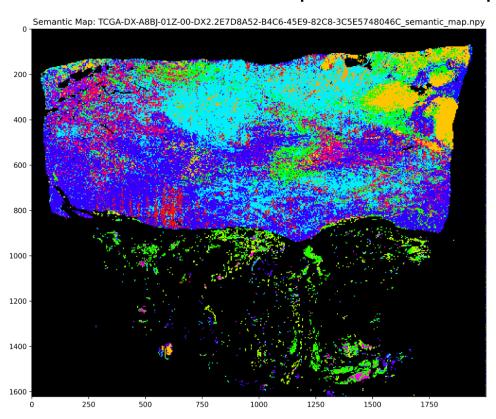
Comparable scores for real and synthetic images across:

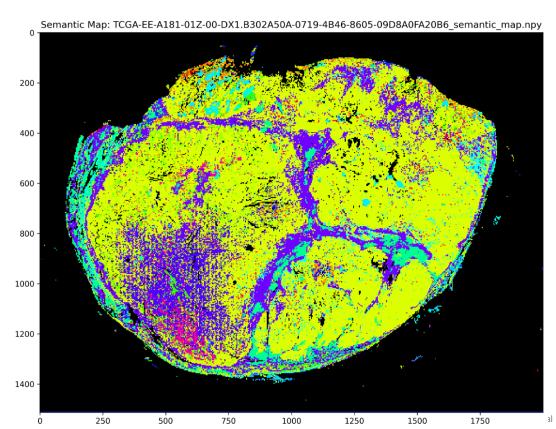
- Overall image quality
- Histological structural detail
- Nuclear morphology accuracy





- Use 11,765 whole-slide images without manual annotation
- Three-phase approach:
 - Feature extraction with foundation models
 - Clustering (100 tissue types)
 - Multi-scale crops/semantic map generation



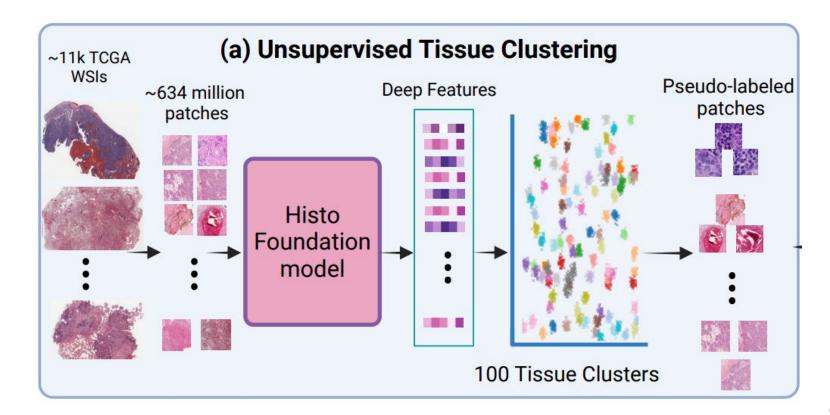


- 80

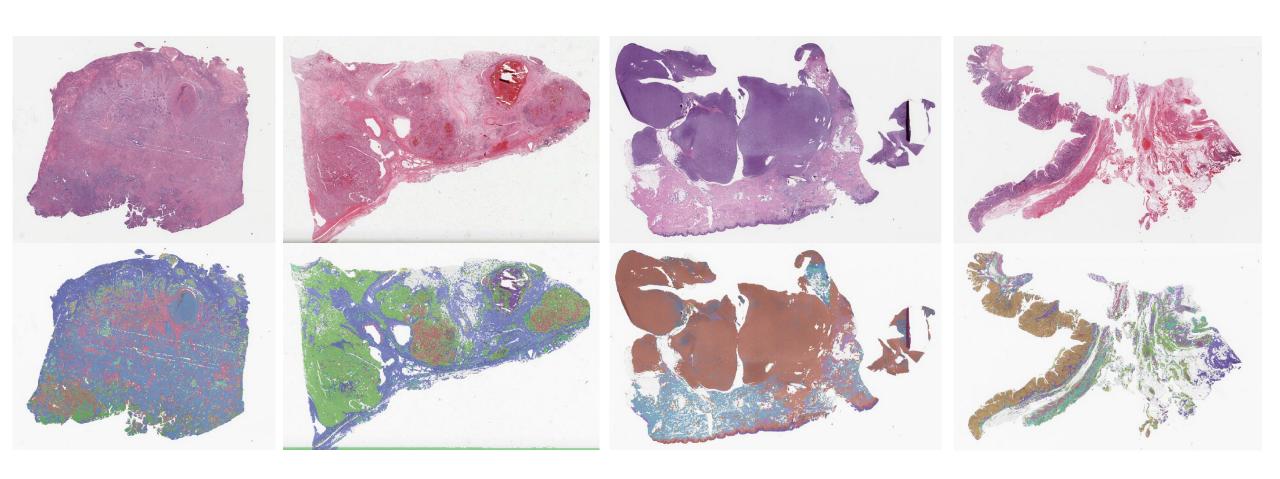
|

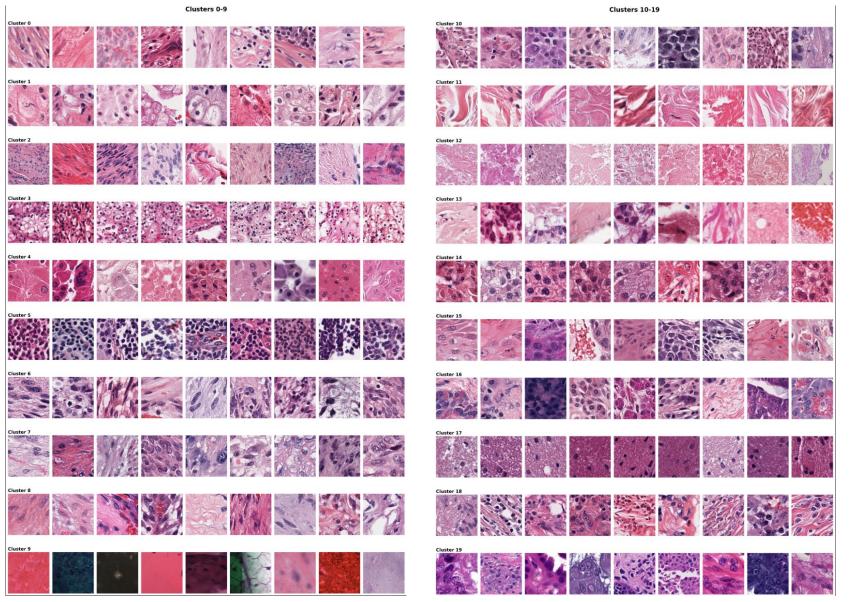
2

- Processed 634 million patches at highest magnification
- Foundation model (i.e., **UNI**) embeddings for feature extraction
- Diversity-aware sampling for clustering 1000 patches per WSI
- Total 1,174,907 patch for clustering
- k-means clustering (GPU) to identify 100 tissue types



k-means clustering to identify 100 tissue types



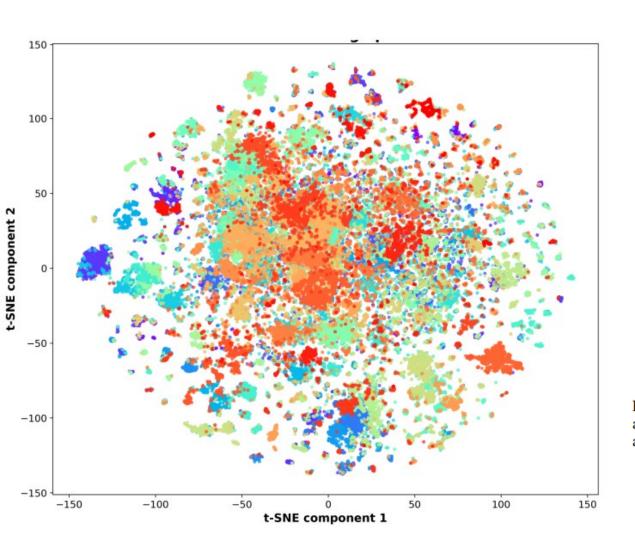


Clusters: 1-10

Clusters: 11-20 Clusters: 61-70

©2025 Mayo Foundation for Medical Education and Research | slid

k-means deep features clustering to identify 100 tissue types

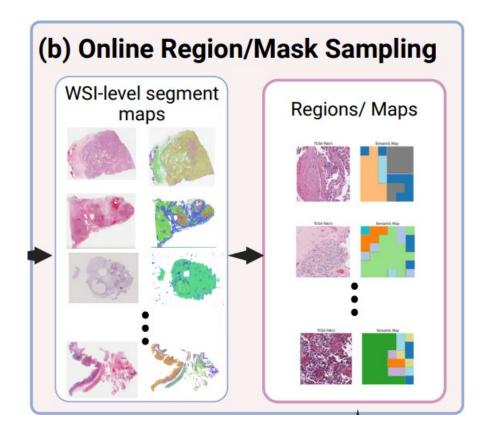


Cluster IDs											
	Cluster 0		Cluster 17		Cluster 34		Cluster 51		Cluster 68	•	Cluster 84
	Cluster 1		Cluster 18		Cluster 35		Cluster 52		Cluster 69		Cluster 85
	Cluster 2		Cluster 19		Cluster 36		Cluster 53		Cluster 70		Cluster 86
	Cluster 3		Cluster 20		Cluster 37		Cluster 54		Cluster 71		Cluster 87
	Cluster 4		Cluster 21		Cluster 38		Cluster 55		Cluster 72		Cluster 88
	Cluster 5		Cluster 22		Cluster 39		Cluster 56		Cluster 73		Cluster 89
	Cluster 6		Cluster 23		Cluster 40		Cluster 57		Cluster 74		Cluster 90
	Cluster 7		Cluster 24		Cluster 41		Cluster 58		Cluster 75		Cluster 91
	Cluster 8		Cluster 25		Cluster 42		Cluster 59		Cluster 76		Cluster 92
	Cluster 9		Cluster 26		Cluster 43		Cluster 60		Cluster 77		Cluster 93
	Cluster 10		Cluster 27		Cluster 44		Cluster 61		Cluster 78		Cluster 94
	Cluster 11		Cluster 28		Cluster 45		Cluster 62		Cluster 79		Cluster 95
	Cluster 12		Cluster 29		Cluster 46		Cluster 63		Cluster 80		Cluster 96
	Cluster 13		Cluster 30		Cluster 47		Cluster 64		Cluster 81		Cluster 97
	Cluster 14		Cluster 31		Cluster 48		Cluster 65		Cluster 82		Cluster 98
	Cluster 15		Cluster 32		Cluster 49		Cluster 66		Cluster 83		Cluster 99
•	Cluster 16	•	Cluster 33	•	Cluster 50		Cluster 67				

Figure 4: t-SNE visualization of 99,792 randomly sampled TCGA patches colored by cluster assignment using UNI foundation model features [2]. The well-defined separation validates this approach of 100 morphologically coherent tissue phenotypes.

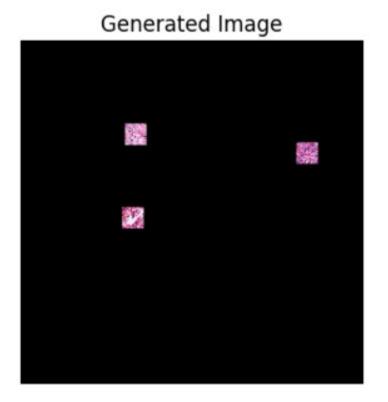
ADAPTIVE HETEROGENEOUS REGION SAMPLING

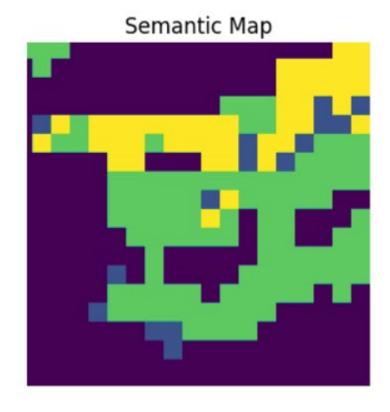
- Compute heterogeneity scores using entropy
- Identify regions with rich tissue interfaces
- Multi-scale visual crops adapted to tissue complexity
- Tissue-aware augmentations: stain variations, controlled rotations



ADAPTIVE HETEROGENEOUS REGION SAMPLING TCGA

original Image

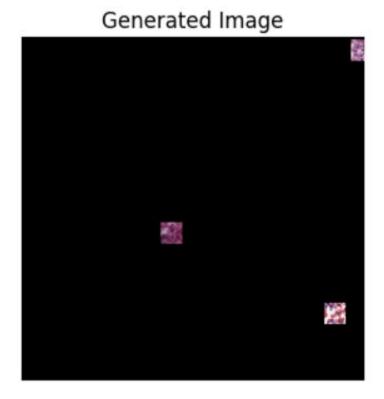


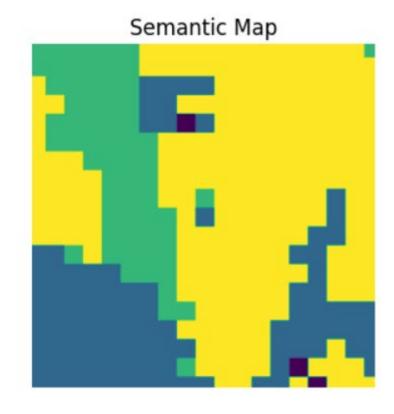


ADAPTIVE HETEROGENEOUS REGION SAMPLING

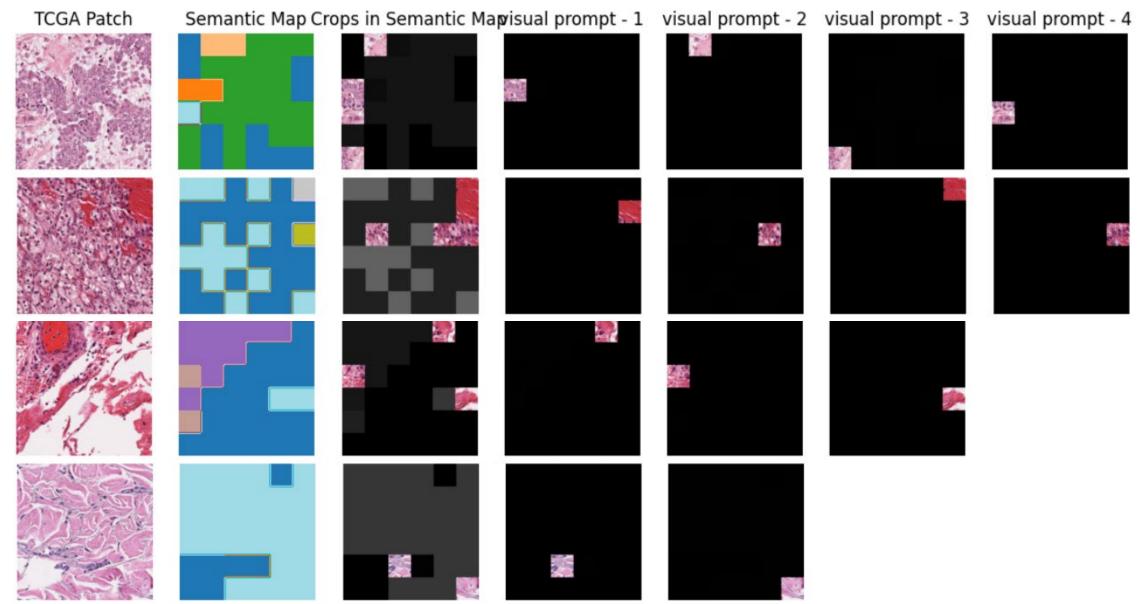
TCGA

original Image



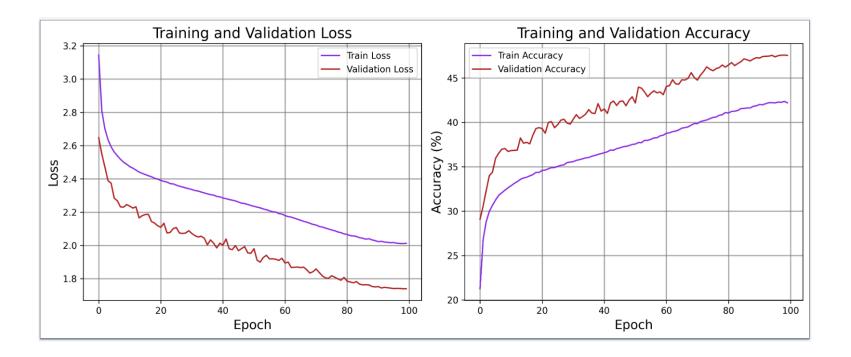


ADAPTIVE HETEROGENEOUS REGION SAMPLING



TISSUE CLASSIFIER FOR INFERENCE

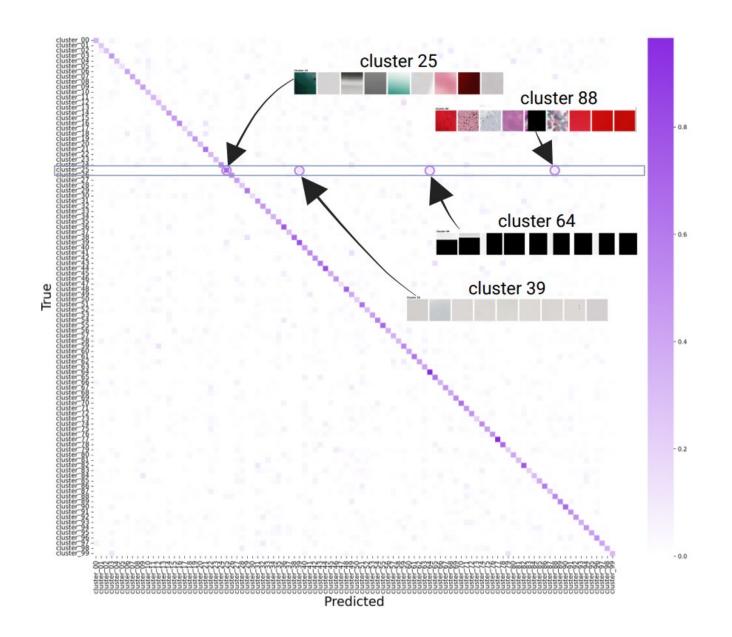
- Lightweight ViT-small architecture for efficient deployment
- Trained on ~500k patches from 11,763 TCGA WSIs
- 85% reduction in computational requirements



TISSUE CLASSIFIER

Cluster classifier performance

100 cluster



ADVANTAGES OVER EXISTING METHODS

- Compared to text-guided approaches: Avoids interobserver variability
- Compared to embedding-based methods: Preserves critical diagnostic features
- Compared to semantic-only methods: Maintains tissue-specific attributes
- Compared to unconditioned models: Precise control over tissue composition

LIMITATIONS

- Computational requirements for processing gigapixel WSIs
- Current focus on **H&E** (hematoxylin and eosin) stained images only
- Predefined clustering may miss extremely rare pathologies

Questions?