# Rebalancing Return Coverage for Conditional Sequence Modeling in Offline Reinforcement Learning

Wensong Bai, Chufan Chen, Yichao Fu, Qihang Xu, Chao Zhang, Hui Qian

Zhejiang University



## Background

- Challenge: CSM-based offline RL often suffers from distributional shift during high-return inference.
- Cause: Imbalanced training data return distribution.
- **Effect:** Models are poorly trained on rare high-return trajectories, leading to suboptimal exploitation at test time.

#### Contribution

- A theoretical characterization is established, showing that the performance of CSM-based policies is governed jointly by the coverage of expert-level returns and full-spectrum runtime returns in the offline dataset.
- A return-coverage rebalancing mechanism is introduced as a simple plug-in module that can be integrated into existing CSM-based methods to enhance robustness and performance.
- A new algorithm, RVDT, is developed on top of Decision Transformer, combining Q-value guidance with expert-policy KL regularization to more closely align sampled actions with high-return behaviors.

#### **Problem Formulation**

- **Setting.** Offline RL operates on a static dataset  $\mathcal{D} = \{\tau = (s_t, a_t, r_t)_{t=1}^H\}$  collected by a behavior policy  $\pi_\beta$ , with no further interaction.
- **Objective.** Learn a policy  $\pi$  that maximizes  $\mathcal{J}(\pi) = \mathbb{E}_{\tau \sim \pi}[g(\tau)], g(\tau_t) = \sum_{i=t}^{H} r_i$ .
- CSM paradigm. Policies are trained via the return-conditioned NLL objective

$$\mathcal{L}(\pi) = -\sum_{ au \in \mathcal{D}} \sum_{t=1}^{H} \log \pi(a_t \mid s_t, g( au_t), \bar{ au}_{t-1}^K),$$

and deployed as  $\pi_f(a|s) = \pi(a|s, f(s), \bar{\tau}^K)$ .

## Methodology

#### Return-rebalanced Decision Transformer (RDT): $\mathcal{L}_{RDT}(\theta) =$

$$\mathbb{E}_{\tau \sim \mathcal{D}}\left[\sum_{i=1}^{H} -\log \pi_{\theta}(a_{i}|s_{i}, g(\tau_{i}), \bar{\tau}_{t-1}^{K})\right] + \alpha \mathbb{E}_{\tau \sim \mathcal{D}_{e}} \sum_{i=1}^{H} \mathsf{KL}\left[\pi_{\theta}(\cdot|s_{i}, g(\tau_{i}), \bar{\tau}_{t-1}^{K}) \| \pi^{e}(\cdot|s_{i})\right]$$

$$\tag{1}$$

#### Proposition (KL regularization as weighted sampling strategy)

Assume the policy  $\pi_{\theta}$  is parameterized by a factorized Gaussian distribution with a fixed standard deviation. Optimizing (1) is equivalent to optimizing the following weighted NLL loss:

$$\arg\min_{\pi_{\theta}} \mathcal{L}_{RDT}(\theta) = \arg\min_{\pi_{\theta}} \mathbb{E}_{\tau \sim \mathcal{D}} \left[ \left( 1 + \alpha \cdot \mathbb{I} \left[ \tau \in \mathcal{D}_{e} \right] \right) \cdot \left( \sum_{i=1}^{H} -\log \pi_{\theta}(a_{i} | s_{i}, g(\tau_{i}), \bar{\tau}_{t-1}^{K}) \right) \right].$$
 (2)

## Methodology

# Return-rebalanced Value-regularized Decision Transformer (RVDT):

$$\mathcal{L}_{\text{RVDT}}(\theta) = \mathbb{E}_{\tau \sim \mathcal{D}} \left[ \sum_{i=1}^{H} -\log \pi_{\theta}(a_{i}|s_{i}, g(\tau_{i}), \bar{\tau}_{t-1}^{K}) \right] - \eta \mathbb{E}_{\tau \sim \mathcal{D}} \mathbb{E}_{s_{i} \sim \tau, a_{i} \sim \pi_{\theta}} [Q^{\pi_{\theta}}(s_{i}, a_{i})] + \alpha \mathbb{E}_{\tau \sim \mathcal{D}_{e}} \sum_{i=1}^{H} \mathsf{KL} \left[ \pi_{\theta}(\cdot|s_{i}, g(\tau_{i}), \bar{\tau}_{t-1}^{K}) \| \pi^{e}(\cdot|s_{i}) \right].$$
(3)

## Analysis I

#### Notation:

- Non-optimal runtime conditioning functions: f
- Optimal (or near-optimal) conditioning functions: f\*

#### Runtime conditional return function:

- f corresponds to arbitrary possible returns that may be encountered during policy execution.
- Let  $\mathcal G$  denote the collection of all possible returns collected by  $\pi \in \Pi$ , then:

$$f: \mathcal{S} \to \mathcal{G}$$
.

• The target conditional function  $f^*$  we aim to find is the RTG under the optimal policy  $\pi^*$ :

$$f(s) = \max_{\pi} \mathbb{E}_{\pi}[g(s)].$$

## Analysis II

- Return-coverage definitions:
  - Expert-level return-coverage:

$$P_{\pi_{\beta}}(g = f^*(s_1) \mid s_1),$$

where  $f^*$  corresponds to the optimal policy  $\pi^*$  of the underlying MDP.

• Full-spectrum return-coverage:

$$P_{\pi_{\beta}}(g = f(s_1) \mid s_1).$$

## **Analysis**

#### Theorem (Performance gap with respect to return-coverage)

Consider a finite-horizon MDP with horizon H, behavior policy  $\pi_{\beta}$ , a runtime conditioning function f, and the optimal conditioning function for  $\pi^*$  is  $f^*$ . Assume the following assumptions hold:

- (i) Return-coverage:  $P_{\pi_{\beta}}(g = f(s_1)|s_1) \ge \alpha_f$  and
- $P_{\pi_{\beta}}\left(g=f^{*}(s_{1})|s_{1}
  ight)\geqlpha_{f}^{*}$  for all initial states  $s_{1}$  .
- (ii) **Near determinism:**  $P(r \neq \mathcal{R}(s, a) \text{ or } s' \neq \mathcal{T}(s, a) | s, a) \leq \epsilon \text{ at all } (s, a) \text{ for some } \mathcal{T} \text{ and } \mathcal{R}.$
- (iii) Consistency of f: f(s) = f(s') + r for all s.

Then the following upper bound holds:

$$J(\pi^*) - J(\pi_f^{CSM}) \le \left(\frac{1}{\alpha_f^*} + 3\right)H^2\epsilon + \left(\frac{1}{\alpha_f} + \frac{1}{\alpha_f^*}\right)H^2C,\tag{4}$$

where  $C \in (0, 1)$  is a constant.

### **Analysis**

#### Theorem (Sample complexity)

To get finite data guarantees, add to the above assumptions:

- (i) Bounded occupancy mismatch:  $P_{\pi^{CSM}}(s) \leq C_f \cdot P_{\pi_{\beta}}(s)$  for all s;
- (ii) Finite policy class □;
- (iii) Bounded log-likelihood variation:
- $|\log \pi(a|s,g) \log \pi(a'|s',g')| \le c$  for any (a,s,g,a',s',g') and all  $\pi \in \Pi$ :
- (iv) Bounded approximation error of  $\Pi$ , i.e.,  $\min_{\pi \in \Pi} L(\pi) \leq \epsilon_{approx}$ . Define the expected loss as
- $L(\hat{\pi}) = \mathbb{E}_{s \sim P_{\pi_{\beta}}} \mathbb{E}_{g \sim P_{\pi_{\beta}}(\cdot|s)} \left[ \text{KL} \left( P_{\pi_{\beta}}(\cdot|s,g) \, \| \, \hat{\pi}(\cdot|s,g) \right) \right].$
- Then for any estimated CSM policy  $\hat{\pi}_f$  that conditions on f at inference time, with probability at least  $1 \delta$ ,

$$J(\pi^*) - J(\hat{\pi}_f) \leq O\left(\left[\frac{C_f}{\alpha_f}\sqrt{c}\left(\frac{\log|\Pi|/\delta}{N}\right)^{1/4} + \frac{C_f}{\alpha_f}\sqrt{\epsilon_{\textit{approx}}} + \frac{\epsilon + C}{\alpha_f^*} + \frac{C}{\alpha_f}\right]H^2\right).$$

## Experiments

#### **Results on D4RL Benchmark:**

| Gym Tasks       | $_{\rm CQL}$ | $_{\mathrm{IQL}}$ | BCQ   | $_{\mathrm{TD3+BC}}$ | MoRel  | BC    | DD       | DT    | $\operatorname{StAR}$ | GDT                   | CGDT  | QT    | RVDT              |
|-----------------|--------------|-------------------|-------|----------------------|--------|-------|----------|-------|-----------------------|-----------------------|-------|-------|-------------------|
| halfcheetah-m-e | 91.6         | 86.7              | 69.6  | 90.7                 | 53.3   | 55.2  | 90.6     | 86.8  | 93.7                  | 93.2                  | 93.6  | 93.2  | $94.4 \pm 0.1$    |
| hopper-m-e      | 105.4        | 91.5              | 109.1 | 98.0                 | 108.7  | 52.5  | 111.8    | 107.6 | 111.1                 | 111.1                 | 107.6 | 113.0 | $113.1 \pm 0.5$   |
| walker2d-m-e    | 108.8        | 109.6             | 67.3  | 110.1                | 95.6   | 107.5 | 108.8    | 108.1 | 109.0                 | 107.7                 | 109.3 | 112.0 | $112.7 \pm 1.6$   |
| halfcheetah-m   | 49.2         | 47.4              | 41.5  | 48.4                 | 42.1   | 42.6  | 49.1     | 42.6  | 42.9                  | 42.9                  | 43.0  | 51.0  | $51.9 \pm 0.3$    |
| hopper-m        | 69.4         | 66.3              | 65.1  | 59.3                 | 95.4   | 52.9  | 79.3     | 67.6  | 59.5                  | 77.1                  | 96.9  | 99.6  | $100.2 \pm 0.1$   |
| walker2d-m      | 83.0         | 78.3              | 52.0  | 83.7                 | 77.8   | 75.3  | 82.5     | 74.0  | 73.8                  | 76.5                  | 79.1  | 87.2  | $90.2 \pm 0.1$    |
| halfcheetah-m-r | 45.5         | 44.2              | 34.8  | 44.6                 | 40.2   | 36.6  | 39.3     | 36.6  | 36.8                  | 40.5                  | 40.4  | 48.8  | $53.8 \pm 2.0$    |
| hopper-m-r      | 95.0         | 94.7              | 31.1  | 60.9                 | 93.6   | 18.1  | 100.0    | 82.7  | 29.2                  | 85.3                  | 93.4  | 102.1 | $103.2 \pm 1.9$   |
| walker2d-m-r    | 77.2         | 73.9              | 13.7  | 81.8                 | 49.8   | 32.3  | 75.0     | 79.4  | 39.8                  | 77.5                  | 78.1  | 97.8  | <b>99.3</b> ± 0.8 |
| Average         | 80.6         | 77.0              | 53.8  | 75.3                 | 72.9   | 52.6  | 81.8     | 76.2  | 66.2                  | 79.1                  | 82.4  | 89.4  | 91.2              |
| Adroit Tasks    | CQL          | $_{\mathrm{IQL}}$ | BCQ   | BEAR                 | O-RL   | BC    | DD       | D-QL  | DT                    | $\operatorname{StAR}$ | GDT   | QT    | RVDT              |
| pen-human       | 37.5         | 71.5              | 66.9  | -1.0                 | 90.7   | 63.9  | 66.7     | 72.8  | 79.5                  | 77.9                  | 92.5  | 111.9 | $127.2 \pm 5.5$   |
| hammer-human    | 4.4          | 1.4               | 0.9   | 0.3                  | 0.2    | 1.2   | 1.9      | 0.2   | 3.7                   | 3.7                   | 5.5   | 10.4  | $24.0 \pm 1.5$    |
| pen-cloned      | 39.2         | 37.3              | 50.9  | 26.5                 | 60.0   | 37.0  | 42.8     | 57.3  | 75.8                  | 33.1                  | 86.2  | 85.8  | $117.8 \pm 8.6$   |
| hammer-cloned   | 2.1          | 2.1               | 0.4   | 0.3                  | 2.0    | 0.6   | 1.7      | 3.1   | 3.0                   | 0.3                   | 8.9   | 11.8  | $21.3 \pm 2.7$    |
| Average         | 20.8         | 28.1              | 29.8  | 6.5                  | 38.2   | 25.7  | 28.3     | 33.4  | 40.5                  | 28.8                  | 48.3  | 55.0  | 72.6              |
| Kitchen Tasks   | CQL          | IQL               | BCQ   | BEAR                 | O-RL   | BC    | DD       | D-QL  | DT                    | StAR                  | GDT   | QT    | RVDT              |
| kitchen-Comp.   | 43.8         | 62.5              | 8.1   | 0.0                  | 2.0    | 65.0  | 65.0     | 84.0  | 50.8                  | 40.8                  | 43.8  | 81.7  | 84.5 ± 2.3        |
| kitchen-partial | 49.8         | 46.3              | 18.9  | 13.1                 | 35.5   | 33.8  | 57.0     | 60.5  | 57.9                  | 12.3                  | 73.3  | 72.5  | $75.0 \pm 2.5$    |
| Average         | 46.8         | 54.4              | 13.5  | 6.6                  | 18.8   | 49.4  | 61.0     | 72.2  | 54.4                  | 26.6                  | 58.6  | 77.1  | 79.8              |
| Maze2D Tasks    | CQL          | IQL               | BCQ   | BEAR                 | TD3+BC | BC    | Diffuser | DD    | DT                    | GDT                   | QDT   | QT    | RVDT              |
| maze2d-u        | 94.7         | 42.1              | 49.1  | 65.7                 | 14.8   | 88.9  | 113.9    | 116.2 | 31.0                  | 50.4                  | 57.3  | 99.2  | $145.1 \pm 3.8$   |
| maze2d-m        | 41.8         | 34.9              | 17.1  | 25.0                 | 62.1   | 38.3  | 121.5    | 122.3 | 8.2                   | 7.8                   | 13.3  | 168.8 | $183.5 \pm 4.5$   |
| maze2d-l        | 49.6         | 61.7              | 30.8  | 81.0                 | 88.6   | 1.5   | 123.0    | 125.9 | 2.3                   | 0.7                   | 31.0  | 242.7 | $254.3 \pm 4.6$   |
| Average         | 62.0         | 46.2              | 32.3  | 57.2                 | 55.2   | 42.9  | 119.5    | 121.5 | 13.8                  | 19.6                  | 33.9  | 170.2 | 194.3             |
| AntMaze Tasks   | CQL          | IQL               | BCQ   | BEAR                 | TD3+BC | BC    | DD       | D-QL  | DT                    | StAR                  | GDT   | QT    | RVDT              |
| antmaze-u       | 74.0         | 87.5              | 78.9  | 73.0                 | 78.6   | 54.6  | 73.1     | 93.4  | 59.2                  | 51.3                  | 76.0  | 96.0  | 98.0 ± 4.0        |
| antmaze-u-d     | 84.0         | 62.2              | 55.0  | 61.0                 | 71.4   | 45.6  | 49.2     | 66.2  | 53.0                  | 45.6                  | 69.0  | 92.0  | $98.0 \pm 4.0$    |
| antmaze-m-d     | 53.7         | 70.0              | 0.0   | 8.0                  | 3.0    | 0.0   | 24.6     | 78.6  | 0.0                   | 0.0                   | 6.0   | 24.0  | $30.0 \pm 6.3$    |
| antmaze-l-d     | 14.9         | 47.5              | 2.2   | 0.0                  | 0.0    | 0.0   | 7.5      | 56.6  | 0.0                   | 0.0                   | 0.0   | 10.0  | $10.0 \pm 0.0$    |
| Average         | 56.6         | 66.8              | 34.0  | 35.5                 | 38.2   | 25.0  | 38.6     | 73.7  | 28.0                  | 24.2                  | 37.8  | 57    | 59.0              |

## Experiments

#### **Results on Maze2D Environments:**

|          | Dataset                                                                  | $\mathbf{CQL}$                                                           | $\mathbf{DT}$                                                            | $\mathbf{QDT}$                                                         | $\mathbf{Q}\mathbf{T}$                                                   | RVDT                                                                     |
|----------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Sparse R | maze2d-open-v0<br>maze2d-umaze-v1<br>maze2d-medium-v1<br>maze2d-large-v1 | $216.7 \pm 80.7 94.7 \pm 23.1 41.8 \pm 13.6 49.6 \pm 8.4$                | $196.4 \pm 39.6$ $31.0 \pm 21.3$ $8.2 \pm 4.4$ $2.3 \pm 0.9$             | $190.1 \pm 37.8$ $57.3 \pm 8.2$ $13.3 \pm 5.6$ $31.0 \pm 19.8$         | $497.9 \pm 12.3$ $105.4 \pm 4.8$ $172.0 \pm 6.2$ $240.1 \pm 2.5$         | $634.6 \pm 12.3$ $145.1 \pm 3.8$ $183.5 \pm 4.5$ $254.3 \pm 4.6$         |
| Dense R  | maze2d-open-v0<br>maze2d-umaze-v1<br>maze2d-medium-v1<br>maze2d-large-v1 | $307.6 \pm 43.5$<br>$72.7 \pm 10.1$<br>$70.9 \pm 9.2$<br>$90.9 \pm 19.4$ | $346.2 \pm 14.3$<br>$-6.8 \pm 10.9$<br>$31.5 \pm 3.7$<br>$45.3 \pm 11.2$ | $325.7 \pm 61.4$<br>$58.6 \pm 3.3$<br>$42.3 \pm 7.1$<br>$62.2 \pm 9.9$ | $608.4 \pm 1.9$<br>$103.1 \pm 7.8$<br>$111.9 \pm 1.9$<br>$177.2 \pm 7.8$ | $663.9 \pm 15.9$<br>$99.5 \pm 4.3$<br>$126.9 \pm 8.7$<br>$197.9 \pm 2.0$ |

#### **Performance Comparison in Low-data Regimes:**

| TD 1 ( D)                                     | 1                       | $D_1$                   | $\mathcal{D}_2$       |                        | $\mathcal{D}_3$        |                        | $\mathcal{D}_4$              |                        |
|-----------------------------------------------|-------------------------|-------------------------|-----------------------|------------------------|------------------------|------------------------|------------------------------|------------------------|
| Task (sparse R)                               | QT                      | RVDT                    | QT                    | RVDT                   | QT                     | RVDT                   | QT                           | RVDT                   |
| maze2d-umaze<br>maze2d-medium<br>maze2d-large | 100.3<br>137.1<br>109.5 | 171.7<br>187.4<br>140.4 | 81.8<br>175.2<br>81.5 | 101.8<br>190.0<br>90.1 | 73.1<br>163.2<br>104.4 | 76.9<br>182.0<br>131.3 | 61.4<br>98.3<br><b>100.2</b> | 100.5<br>175.3<br>95.1 |
| Average                                       | 115.6                   | 166.5                   | 112.8                 | 127.3                  | 113.6                  | 130.1                  | 86.6                         | 123.6                  |

## Experiments

#### **Ablation Results:**

| Task        | DT    | DT-Dup | RDT   | QT    | VDT   | RVDT-Dup | RVDT-Determ | RVDT  |
|-------------|-------|--------|-------|-------|-------|----------|-------------|-------|
| halfcheetah | 84.2  | 90.3   | 90.5  | 91.2  | 89.5  | 93.4     | 91.5        | 94.9  |
| hopper      | 109.5 | 112.1  | 111.9 | 112.3 | 112.6 | 112.1    | 113.6       | 113.8 |
| walker2d    | 108.2 | 108.8  | 109.7 | 113.2 | 110.3 | 110.9    | 113.1       | 118.7 |
| Average     | 100.6 | 103.7  | 104.0 | 105.6 | 104.1 | 105.5    | 106.1       | 109.1 |

| Component       | DT      | DT-Dup | RDT    | QT      | VDT     | RVDT-Dup | RVDT-Determ | RVDT    |
|-----------------|---------|--------|--------|---------|---------|----------|-------------|---------|
| Explicit Rebal. | None    | Dup.   | KL     | None    | None    | Dup.     | KL          | KL      |
| Implicit Rebal. | None    | None   | None   | Q-value | Q-value | Q-value  | Q-value     | Q-value |
| Policy Type     | Determ. | Stoch. | Stoch. | Determ. | Stoch.  | Stoch.   | Determ.     | Stoch.  |

## Thank you!

Questions?

Contact: Wensong Bai | Zhejiang University