

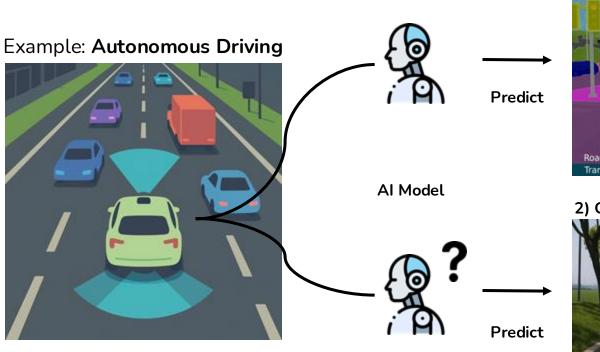
OVS Meets Continual Learning: Towards Sustainable Open-Vocabulary Segmentation

Dongjun Hwang¹, Yejin Kim¹, Minyoung Lee¹, Seong Joon Oh^{2,3}, Junsuk Choe¹

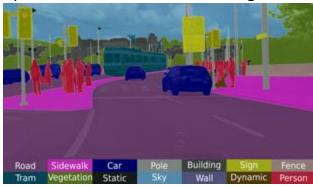
¹Sogang University, ²University of Tübingen, ³Tübingen Al Center

NeurlPS 2025

Background: Open-Vocabulary Segmentation (OVS)



1) Classes included in the training set

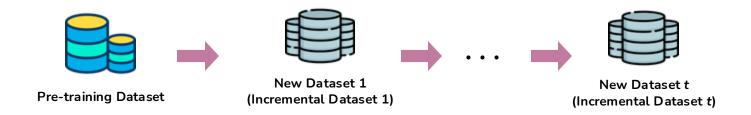


2) Classes not included in the training set

Goal of OVS: To recognize classes that are not included in the training set.

Motivation: Limitation of OVS

Most previous OVS studies have assumed a single training scenario using a pre-training dataset.



However, in practice, new datasets are often collected and become available sequentially over time.

This raises a natural question:

How should we handle such new datasets? Should we train on them?

Motivation: Limitation of OVS

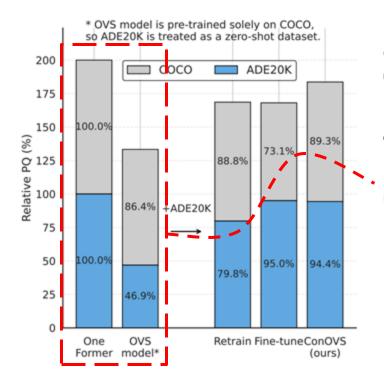


Figure: (a) Comparison of the performance of the OVS model, Retraining, Fine-tuning, and ConOVS against the closed-set segmentation model OneFormer.

Current OVS models still do not achieve sufficient performance on unseen classes to be used as is when new datasets become available.

In other words, their generalization ability is not yet strong enough to eliminate the need for further training.

In fact, they often underperform compared to closed-set segmentation models fine-tuned on specific datasets.

Therefore, when new data becomes available, the model needs to be trained on it to expand its recognition capability.

Goal: Effectively learn new information while preserving previously acquired knowledge.

Then, how can we expand the OVS model's recognition

ability using new (incremental) datasets?

Motivation: Limitation of OVS

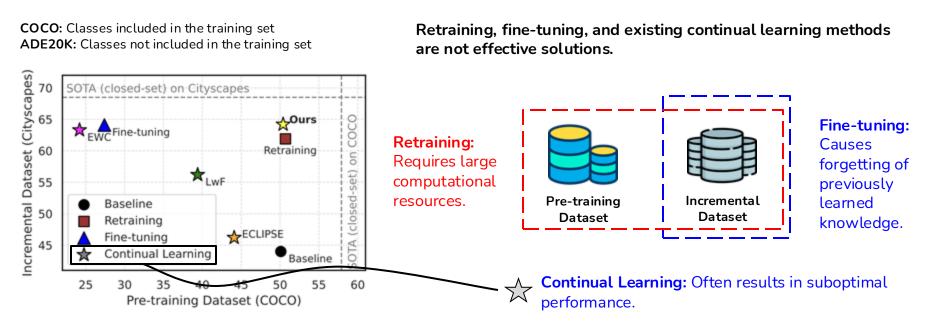


Figure: Performance of each method.

Training Phase

During training, we derive expert models and multivariate normal (MVN) distributions for each dataset.

- 1) We first train an OVS model from scratch using the pre-training dataset.
- 2.1) Then, we fine-tune only the decoder on each incremental dataset to obtain an expert model specific to that dataset.
- 2.2) For each dataset, we also compute the mean and covariance matrix of the image and text embeddings, which define the MVN distributions.

Inference Phase

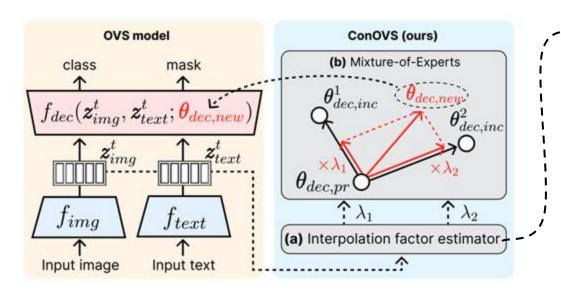


Figure: Overview of the inference process of our proposed method.

Algorithm 1 Interpolation factor estimator

Require: Input $(\boldsymbol{x}_{img}, \boldsymbol{x}_{text})$, encoders f_{img}, f_{text} , decoder f_{dec} ; MVN parameters $\{\boldsymbol{\Phi}_{img}^i, \boldsymbol{\Phi}_{text}^i\}_{i=0}^n$; PDF $p(\cdot|\boldsymbol{\Phi})$

Ensure: Interpolation factor λ

- 1: Extract embeddings: $z_{img} \leftarrow f_{img}(x_{img})$, $z_{text} \leftarrow f_{text}(x_{text})$
- 2: Estimate likelihoods: $\boldsymbol{l}_{img} \leftarrow \{p(\boldsymbol{z}_{img} \mid \boldsymbol{\Phi}_{img}^i)\}, \boldsymbol{l}_{text} \leftarrow \{p(\boldsymbol{z}_{text} \mid \boldsymbol{\Phi}_{text}^i)\}$
- 3: Compute: $p_{img} \leftarrow softmax(l_{img}), p_{text} \leftarrow softmax(l_{text})$
- 4: Combine: $\lambda \leftarrow \max(\boldsymbol{p}_{img}, \boldsymbol{p}_{text})$
- 5: return λ

Inference Phase

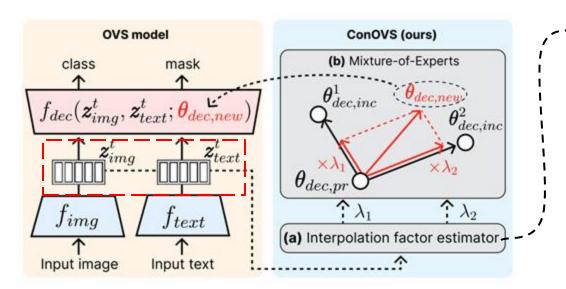


Figure: Overview of the inference process of our proposed method.

Require: Input $(\boldsymbol{x}_{img}, \boldsymbol{x}_{text})$, encoders f_{img}, f_{text} , decoder f_{dec} ; MVN parameters $\{\boldsymbol{\Phi}_{img}^i, \boldsymbol{\Phi}_{text}^i\}_{i=0}^n$; PDF $p(\cdot|\boldsymbol{\Phi})$ Ensure: Interpolation factor $\boldsymbol{\lambda}$ 1: Extract embeddings: $\boldsymbol{z}_{img} \leftarrow f_{img}(\boldsymbol{x}_{img})$, $\boldsymbol{z}_{text} \leftarrow f_{text}(\boldsymbol{x}_{text})$ 2: Estimate likelihoods: $\boldsymbol{l}_{img} \leftarrow \{p(\boldsymbol{z}_{img} \mid \boldsymbol{\Phi}_{img}^i)\}$, $\boldsymbol{l}_{text} \leftarrow \{p(\boldsymbol{z}_{text} \mid \boldsymbol{\Phi}_{text}^i)\}$ 3: Compute: $\boldsymbol{p}_{img} \leftarrow \text{softmax}(\boldsymbol{l}_{img})$, $\boldsymbol{p}_{text} \leftarrow \text{softmax}(\boldsymbol{l}_{text})$

4: Combine: $\lambda \leftarrow \max(p_{img}, p_{text})$

5: return λ

Inference Phase

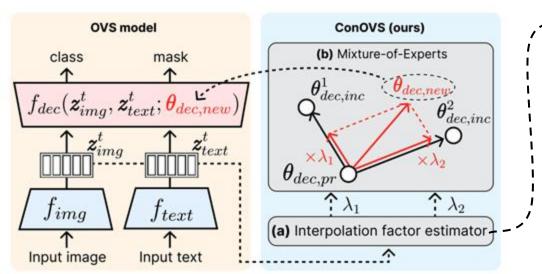


Figure: Overview of the inference process of our proposed method.

Algorithm 1 Interpolation factor estimator Require: Input $(\boldsymbol{x}_{\mathrm{img}}, \boldsymbol{x}_{\mathrm{text}}),$ encoders f_{img} , f_{text} , decoder f_{dec} ; MVN parameters $\{\mathbf{\Phi}_{\text{img}}^i, \mathbf{\Phi}_{\text{text}}^i\}_{i=0}^n$; PDF $p(\cdot|\mathbf{\Phi})$ **Ensure:** Interpolation factor λ 1: Extract embeddings: $z_{img} \leftarrow f_{img}(x_{img})$, $\boldsymbol{z}_{\text{text}} \leftarrow f_{\text{text}}(\boldsymbol{x}_{\text{text}})$ 2: Estimate likelihoods: $l_{img} \leftarrow \{p(z_{img} \mid$ $\{\boldsymbol{\Phi}_{\text{img}}^i\}, \boldsymbol{l}_{\text{text}} \leftarrow \{p(\boldsymbol{z}_{\text{text}} \mid \boldsymbol{\Phi}_{\text{text}}^i)\}$ 3: Compute: $p_{\text{img}} \leftarrow \text{softmax}(l_{\text{img}})$, $p_{\text{text}} \leftarrow \text{softmax}(l_{\text{text}})$ 4: Combine: $\lambda \leftarrow \max(\boldsymbol{p}_{img}, \boldsymbol{p}_{text})$ 5: return λ

Inference Phase

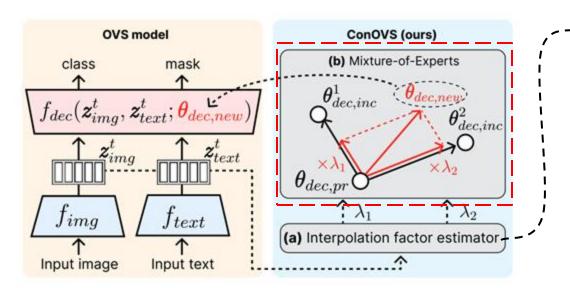


Figure: Overview of the inference process of our proposed method.

Algorithm 1 Interpolation factor estimator

Require: Input $(\boldsymbol{x}_{img}, \boldsymbol{x}_{text})$, encoders f_{img}, f_{text} , decoder f_{dec} ; MVN parameters $\{\boldsymbol{\Phi}_{img}^i, \boldsymbol{\Phi}_{text}^i\}_{i=0}^n$; PDF $p(\cdot|\boldsymbol{\Phi})$

Ensure: Interpolation factor λ

- 1: Extract embeddings: $z_{img} \leftarrow f_{img}(x_{img})$, $z_{text} \leftarrow f_{text}(x_{text})$
- 2: Estimate likelihoods: $\boldsymbol{l}_{img} \leftarrow \{p(\boldsymbol{z}_{img} \mid \boldsymbol{\Phi}_{img}^i)\}, \boldsymbol{l}_{text} \leftarrow \{p(\boldsymbol{z}_{text} \mid \boldsymbol{\Phi}_{text}^i)\}$
- 3: Compute: $p_{img} \leftarrow softmax(l_{img}), p_{text} \leftarrow softmax(l_{text})$
- 4: Combine: $\lambda \leftarrow \max(\boldsymbol{p}_{img}, \boldsymbol{p}_{text})$
- 5: return λ

Experiments: **Settings**

Type of Learning Sequence	Pre-training Dataset	Incremental Dataset	Zero-shot test Dataset		
(S1) Scenario 1	COCO	Cityscapes	ADE20K		
(S2) Scenario 2	COCO	ADE20K	Cityscapes		
(S3) Scenario 3	coco	Cityscapes, ADE20K	LVIS, BDD100K, Mapillary Vistas, PC-59, PC-459, PAS-20, PAS-21, A-847		
(S4) Scenario 4	coco	Cityscapes, ADE20K, BDD100K, Mapillary Vistas	LVIS, PC-59, PC-459, PAS-20, PAS-21, A-847		

- Learning Sequence: We define four experimental scenarios (S1, S2, S3, S4) based on different learning sequences of the datasets.
- **Comparisons**: Retraining, Fine-tuning, ER (Experience Replay), LwF (Learning without Forgetting), EWC (Elastic Weight Consolidation), ECLIPSE (Continual learning method for the closed-set segmentation).
- **Evaluation Metrics**: We evaluate panoptic, instance, and semantic segmentation using PQ, mAP, and mIoU, respectively. Due to space constraints, we report only PQ in the main paper.

Experiments: Scenario 1, 2, 3

Scenario 1, 2: One Incremental Dataset

In scenarios S1 and S2, **our method consistently outperforms existing approaches across all datasets**, whether the incremental dataset is ADE20K or Cityscapes

Scenario 3: Two Incremental Datasets

In scenario S3, **our method consistently achieves superior performance** compared to both fine-tuning and retraining.

Table: Comparison of performance when the incremental dataset is (left) Cityscapes (right) ADE20K.

Method	CL COCO (pre-training)		Cityscapes ADE20K (incremental) (zero-shot)		Method		COCO (pre-training)	ADE20K (incremental)	Cityscapes (zero-shot)
fc-clip	ж	50.1	44.0	23.5	fc-clip	×	50.1	23.5	44.0
Fine-tuning	Х	-22.7	+20.1	-10.3	Fine-tuning	Х	-7.7	+24.1	-3.0
Retraining	×	+0.6	+17.9	+1.7	Retraining	×	+1.4	+16.5	-1.2
ER	1	-1.6	+19.0	+0.3	ER	1	+0.4	+21.5	-3.5
LwF	1	-10.7	+12.2	-0.8	LwF	1	-3.8	+13.7	-1.0
EWC	1	-25.9	+19.3	-9.8	EWC	1	-11.1	+20.7	-2.6
ECLIPSE	1	-6.0	+2.2	+0.9	ECLIPSE	1	-0.5	+0.2	-5.9
ConOVS (ours)	/	+0.3	+20.2	+2.5	ConOVS (ours)	1	+1.7	+23.8	+0.9
X-Decoder	ж	56.7	36.3	16.7	X-Decoder	Х	56.7	16.7	36.3
Fine-tuning	х	-50.4	+26.6	-12.9	Fine-tuning	Х	-37.3	+28.2	-3.7
ConOVS (ours)	1	-0.4	+26.6	+0.1	ConOVS (ours)	1	-1.5	+29.2	+1.4

Table: Performance comparison in scenario S3.

Method	Learning Sequence	COCO (pre-training)	ADE20K (incremental)	Cityscapes (incremental)		
fc-clip	-	50.1	23.5	44.0		
Fine-tuning	$ADE \to City$	20.8	15.4	65.2		
Fine-tuning	$City \rightarrow ADE$	39.3	48.3	46.0		
Retraining	COCO, City, ADE	48.6	35.5	60.5		
ConOVS (ours)	City, ADE	<u>51.6</u>	47.0	64.3		

Experiments: Scenario 3

Scenario 3: Two Incremental Datasets

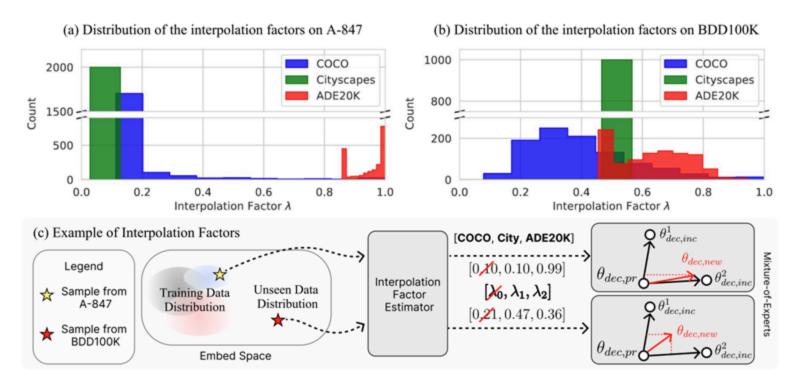
Method	Learning Sequence	LVIS (mAP)	BDD100K (PQ)	Mapillary (mIoU)	PC-59 (mIoU)	PC-459 (mIoU)	PAS-20 (mIoU)	PAS-21 (mIoU)	A-847 (mIoU)
fc-clip	-	20.5	19.0	26.0	53.0	16.9	93.1	80.2	13.8
Fine-tuning	$City \rightarrow ADE$	21.7	19.7	27.8	52.1	17.2	92.3	76.7	16.0
Fine-tuning	$ADE \rightarrow City$	10.4	21.3	24.2	45.9	13.5	87.4	70.7	11.5
Retraining	COCO, City, ADE	21.5	21.8	28.0	53.2	17.3	93.3	80.9	15.2
ConOVS (ours)	City, ADE	23.1	<u>22.6</u>	<u>29.1</u>	<u>54.9</u>	<u>17.9</u>	<u>93.6</u>	80.7	<u>16.3</u>

In addition, our method also consistently outperforms other approaches in various zero-shot evaluations.

As shown in the above table, it achieves superior performance across all eight zero-shot test datasets.

Experiments: Analysis

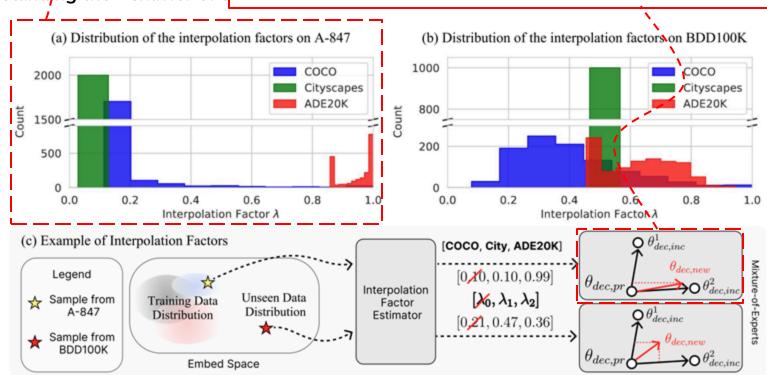
Understanding the Behavior of the Interpolation Factor.



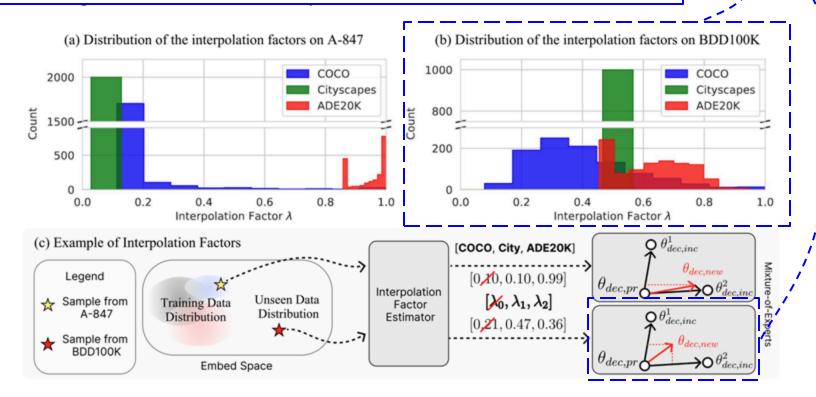
Experiments: Analysis

Understanding the Behavior of t

When input samples are similar to a previously trained distribution, our method selectively activates the corresponding expert to maximize performance.



In such cases, our method disperses the λ values to avoid over-reliance on a single expert. Instead, it combines the weights of multiple experts based on the probability that the input sample belongs to each distribution.



Conclusion

- We identify that existing Open-Vocabulary Segmentation (OVS) methods perform poorly on unseen data, a limitation overlooked by prior work.
- To address this, we define a new setting where OVS models are incrementally trained with new datasets.
- We find that retraining, fine-tuning, and continual learning are **inefficient or ineffective under this setting.**
- We propose ConOVS, an MoE-based continual learning method that dynamically merges expert decoders by
 estimating the dataset distribution of each input, and we validate its effectiveness through extensive evaluations
 across diverse sequential learning settings.

• **Future work**: We can expand this work to Open-Vocabulary object Detection (OVD) as ConOVS fine-tune the decoder and usually OVD utilize the encoder-decoder framwork.