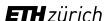
Attention with Trained Embeddings Provably Selects Important Tokens

Diyuan Wu*¹Aleksandr Shevchenko*²Samet Oymak³Marco Mondelli¹

¹ISTA, ²ETHZ, ³University of Michigan

November 4, 2025



WSOM Token selection November 4, 2025 1/11

Motivation

Consider sentences classification problem, some tokens are more important than others.

Example from IMDB movie reviews

It's **terrific** when a funny movie doesn't make smile you. What a **pity**!! This film is very **boring** and so long. It's simply **painful**. The story is **staggering** without goal and **no fun**. You feel better when it's finished.

Questions

When learn with attention based models on such task, can the model learn to select important tokens from others?

WSOM Token selection November 4, 2025 2 / 11

Model

Training set

We have n data point $\mathcal{X}_n = \{(X^k, y^k)\}_{k=1}^n$ with each $X \in \mathcal{X}_n$ is $[x_1, \dots, x_T]$, and $y = \pm 1$. Denote the vocab set is S.

Single-layer attention

Denote $\mathbf{E} \in \mathbb{R}^{|S| \times d}$ be the embedding layer. For each sequence X, the embedding is $\mathbf{E}_X = [E_{x_1}, \dots, E_{x_T}]^{\top} \in \mathbb{R}^{T \times d}$

$$f(X; p, \mathbf{E}) = \mathtt{Softmax}(p^{\top} \mathbf{E}_{X}^{\top}) \mathbf{E}_{X} v = \frac{\sum_{i=1}^{T} \exp(p^{\top} E_{x_{i}}) E_{x_{i}}^{\top} v}{\sum_{i=1}^{T} \exp(p^{\top} E_{x_{i}})}$$

Fix v be a unique vector, and we train p, E.

Logistic Loss

$$\mathcal{L}(p, \mathbf{E}) = \widehat{\mathbb{E}}[\log(1 + \exp(-yf(X; p, \mathbf{E}))]$$

What tokens are important?

Questions

Given a training set without any prior information, how do we define what tokens are important?

Empirical Importance

Given a token s, we define:

 α_s = total occurrance with label '1' – total occurrance with label '-1'

- **1** Tokens with larger $|\alpha_s|$ is more important.
- ② s is positive/negative/irrelevant: $\alpha_s > 0/<0/=0$.
- $oldsymbol{\circ}$ s is completely positive/negative if s only occur with label 1/-1.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣へ○

4 / 11

One step of embedding training learns token importance

Lemma

Under standard initialization where $E_s \overset{i.i.d}{\sim} \mathcal{N}(0,1/d\cdot I), p \sim \mathcal{N}(0,1/d\cdot I),$ with large enough d, after one-setp of GD with step size η_0 ,:

$$E_s^1 \approx E_s^0 + \frac{\eta_0}{2} \alpha_s v, \forall s \in \mathcal{S}$$

Recall the model

$$f(X; p, \mathbf{E}) = \frac{\sum_{i=1}^{T} \exp(p^{\top} E_{x_i}) E_{x_i}^{\top} v}{\sum_{j=1}^{T} \exp(p^{\top} E_{x_j})}$$

After one step: $E_{x_i}^{\top} v \approx \eta_0 \alpha_s / 2$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

5 / 11

WSOM Token selection November 4, 2025

Implicit bias

Question

Suppose we fix E after one-step and only train p with GF, is there any implicit bias over p?

Simple data model

Each sequence in \mathcal{X}_n contains either a *single completely positive* token or a *single completely negative* token, and all remaining tokens are *irrelevant*.

6/11

What do we expect?

We want to make $\mathcal{L}(p, \mathbf{E}) = \widehat{\mathbb{E}}[\log(1 + \exp(-\underline{y}f(X; p, \mathbf{E}))]$ small.

$$\Rightarrow \text{ For each } (X,y), \text{ we want } yf(X;p,\textbf{\textit{E}}) = \frac{\sum_{i=1}^{T} \exp(p^{\top}E_{x_i})y\textbf{\textit{E}}_{x_i}^{\top}v}{\sum_{j=1}^{T} \exp(p^{\top}E_{x_j})} \text{ large.}$$

 \Rightarrow For each (X, y), if $y E_{x_i}^{\top} v > y E_{x_j}^{\top} v$, we want $p^{\top} E_{x_i} \ge p^{\top} E_{x_j}$.

Token selection

Given p, for each X, we defined the tokens in X selected by p as:

$$S_X(p) = \{x_i : i \in \arg\max_i p^\top E_{x_i}\}$$

WSOM Token selection November 4, 2025 7 / 11

Limiting token selection

Lemma

With high probability over the initialization,

$$\|p_t\|_2 \to \infty$$

Only selected tokens matter

After training long enough,

$$f(X; p_t, \boldsymbol{E}) pprox rac{1}{|\mathcal{S}_X(p_t)|} \sum_{i \in \mathcal{S}_X(p_t)} \boldsymbol{E}_{x_i}^{\top} \boldsymbol{v}$$

Lemma

When η_0 is large enough, for each X, all the important tokens must be selected by p_t for large enough t. (But can also select irrelevant ones)

Max-margin token selection

Question

There could be many p that do the same selection for all X, is there any implicit bias over the $\lim_{t\to t} \frac{p_t}{\|p_t\|_2}$?

Lemma (Max-margin token selection)

Suppose
$$\frac{p_{\infty}}{\|p_{\infty}\|_2} = \lim_{t \to t} \frac{p_t}{\|p_t\|_2}$$
 exists, then

$$p_{\infty} = \operatorname*{arg\,min}_{p} \|p\|_{2}$$

s.t.
$$p^{\top}(E_s - E_{s'}) \geq 1, \forall s \in \mathcal{S}_X(p_{\infty}), \forall s' \in X \setminus \mathcal{S}_X(p_{\infty}), \forall X.$$

<ロト < 個 ト < 重 ト < 重 ト 三 重 の < で

WSOM Token selection November 4, 2025 9 / 11

Numerical Experiments

Synthetic data:

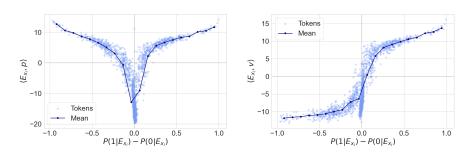


Figure: Dot-product of embedding tokens with $\langle \operatorname{cls} \rangle$ token p (left) and regression coefficients v (right), as a function of the token-wise difference in posterior probabilities for synthetic data. The concentrated cloud of points around zero corresponds to the tokens in the irrelevant set.

Numerical experiments

IMDB and Yelp dataset:

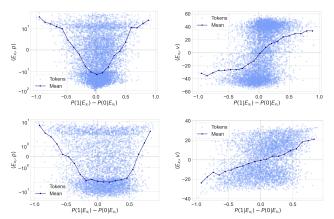


Figure: Dot-product of embedding tokens with CLS token p and regression coefficients v versus token-wise difference in posterior for IMDB dataset (top row) and Yelp dataset (bottom row).