A Novel General Framework for Sharp Lower Bounds in Succinct Stochastic Bandits

Guo Zeng¹ Jean Honorio^{1,2}

¹School of Computing and Information Systems, The University of Melbourne

²ARC Training Centre in Optimisation Technologies, Integrated Methodologies, and Applications

Problem Setting

At each round t

The agent executes an action A_t from a fixed action set A. Then, the bandit machine generates a reward

$$y_t = \langle A_t, heta
angle + \eta_t$$
 where $\eta_t \sim \mathcal{N}(0, 1)$

- The parameter θ is unknown to the agent and has a succinct structure,
 - e.g. entry-sparse vector, group-sparse matrix, or low-rank matrix
- ullet The agent follows a policy π to select actions based on past interactions

The **regret** of a policy π on a bandit instance (A, θ) up to *n*-rounds, relative to an omniscient policy that always select the best actions:

$$R_n^\pi(\mathcal{A}, heta) := \mathbb{E}_{\pi, heta} \left[\sum_{t=1}^n \max_{X \in \mathcal{A}} \langle X, heta
angle - \sum_{t=1}^n y_t
ight] \quad ext{where } \max_{X \in \mathcal{A}} |\langle X, heta
angle| \leq 1$$

Single-round regret is **bounded**. Regret grows at best O(1), at worst O(n)

Regret Upper and Lower Bounds

- Upper bound limits the regret growth of a specific policy uniformly across a class of bandit instances, called the assumption class
- Lower bound upholds the best achievable regret rate of any policy over the assumption class

Succinct structure	Prior upper bounds	Prior lower bounds
Entry-sparse vector $\theta \in \mathbb{R}^d$ At most s non-zero entries	$O(\sqrt{sdn})$ in [1] $O(s\sqrt{n}\log(dn))$ in [5] $O(\sqrt{sn}\log(dn))$ in [8] $O(C_{\min}^{-2/3}s^{2/3}n^{2/3})$ in [2] $O(s^{1/3}n^{2/3}\sqrt{\log(dn)})$ in [7]	$\Omega(\min(C_{\min}^{-1/3}s^{1/3}n^{2/3},\sqrt{dn}))$ in [2] $\Omega(\sqrt{sdn})$ in [6]
Group-sparse matrix $ heta \in \mathbb{R}^{d_1 imes d_2}$ At most s non-zero rows	$O(\sqrt{sd_2d_1n})$ in [3] $O(s^{1/3}n^{2/3}(\sqrt{d_2}+\sqrt{\log d_1}))$ in [7]	_
Low-rank matrix $ heta \in \mathbb{R}^{d_1 imes d_2}$ Rank limited to s	$O((d_1 + d_2)^{3/2} \sqrt{sn})$ in [4] $O((d_1 + d_2)^{3/2} \sqrt{sn})$ in [3] $O(s^{1/3} n^{2/3} \log(d_1 + d_2))$ in [7]	_

Contribution

- A succinctness model in general vector space, along with lemmas that may be of independent interest.
- A general framework for deriving minimax lower bounds of succinct linear bandits in both data-rich (n >> d) and data-poor (n << d) regimes
 - Revolving around: information-regret trade-off & succinctness support.
- **Improved and novel lower bounds** from applying this framework to three stochastic linear bandit problems that exhibit *succinct structure* and permit *well-conditioned exploration*.

Succinctness Model

When a general vector $X \in \mathbb{V}$ can be called "succinct" and how succinct it is?

The succinct unit set $\mathcal{U} \subseteq \mathbb{V}$ exists, containing "succinct units"

• pre-defined "1-succinct" vectors of unit length, i.e. $\|X\| = \langle X, X \rangle = 1$

A set of d succinct units $\{E_i\}_{i=1}^d \subseteq \mathcal{U}$ forms **a succinct support** if and only if

$$\sup_{E\in\mathcal{U}}\sum_{i=1}^d|\langle E,E_i\rangle|=1$$

$X \in \mathbb{V}$ is *s*-succinct if and only if

• $X = \sum_{i=1}^{s} a_i E_i$ for some support $\{E_i\}_{i=1}^{s}$ and scalar coefficients $\{a_i\}_{i=1}^{s}$

Two semi-norms $Q(\cdot)$ and $R(\cdot)$

$$\forall X \in \mathbb{V} : \quad Q(X) := \sup_{E \in \mathcal{U}} \langle X, E \rangle, \quad R(X) := \sup_{Q(Y) \le 1} \langle X, Y \rangle$$

• If X is s-succinct, $|\langle X, Y \rangle| \leq \min(Q(X)R(Y), R(X)Q(Y))$ for any $Y \in \mathbb{V}$

General Lower Bound

Consider all actions $X \in \mathbb{V}$ and parameters $\theta \in \mathbb{V}$ satisfy $Q(X) \leq 1$ and $R(\theta) \leq 1$

Assume the existence of

- a parameter $\theta_0 \in \mathbb{V}$ decomposable to some support $\{E_1, E_2, ..., E_k\}$
- an action set $\mathcal{H} \subseteq \mathbb{V}$ satisfying $\max_{X \in \mathcal{H}} \langle X, \theta_0 \rangle \leq -C_0$ for some constant $C_0 > 0$
- s-k groups of succinct units, $\mathcal{G}_1, ..., \mathcal{G}_{s-k}$, where any $(E'_1, E'_2, ..., E'_{s-k}) \in \prod_{i=1}^{s-k} \mathcal{G}_i$ can form a support of cardinality $s \geq 6k$ together with $\{E_1, E_2, ..., E_k\}$

Then we can construct an action set A such that, given any policy π , there exists an s-succinct parameter θ to incur regret

$$R_n^{\pi}(\mathcal{A}, \theta) \geq \frac{\min(C_0, e^{-4}/8)}{3} \cdot \min(s^{\frac{2}{3}}n^{\frac{2}{3}}q^{\frac{1}{3}}, s\sqrt{pn})$$

- ullet $q\geq 1$ captures the geometric interplay between ${\cal H}$ and each group ${\cal G}_i$
- $p \ge 1$ is related to the geometry within each group \mathcal{G}_i itself

Application

For the entry-sparse setting, the assumption class: $\theta \in \mathbb{R}^d$ has at most s non-zero entries, $\mathcal{A} \subseteq \mathbb{R}^d$ satisfies $C_{\min}(\mathcal{A}) > 0$ where

$$C_{\min}(\mathcal{A}) := \max_{\mu \in \Pr(\mathcal{A})} \min_{\|\beta\|=1} \mathbb{E}_{X \sim \mu}[\langle X, \beta \rangle^2]$$

- the largest possible minimum eigenvalue of the population covariance matrix
- imposed to bypass the linear regret in data-poor regime
- readily extendable to the group-sparse & low-rank settings where $\mathcal{A} \subseteq \mathbb{R}^{d_1 \times d_2}$

For each setting, we define \mathcal{U} and identify a valid combination of θ_0 , \mathcal{H} and $\{\mathcal{G}_i\}$

Setting	q	p	Lower bound	
entry-sparse	C_{\min}^{-1}	d/s	$\Omegaig(\minig(C_{\min}^{-rac{1}{3}}s^{rac{2}{3}}n^{rac{2}{3}},\sqrt{dsn}ig)ig)$	improved in data-poor
group-sparse	C_{min}^{-1}	d_1d_2/s	$\Omega\left(\min\left(C_{\min}^{-\frac{1}{3}}s^{\frac{2}{3}}n^{\frac{2}{3}},\sqrt{d_1d_2sn}\right)\right)$	novel
low-rank	C_{\min}^{-1}/s	d_1d_2/s^2	$\Omega\left(\min\left(C_{\min}^{-\frac{1}{3}}s^{\frac{1}{3}}n^{\frac{2}{3}},\sqrt{d_1d_2n} ight) ight)$	novel

References

- Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Online-to-confidence-set conversions and application to sparse stochastic bandits. In *Artificial Intelligence and Statistics*, pages 1–9. PMLR, 2012.
- [2] Botao Hao, Tor Lattimore, and Mengdi Wang. High-dimensional sparse linear bandits. Advances in Neural Information Processing Systems, 33:10753–10763, 2020.
- [3] Nicholas Johnson, Vidyashankar Sivakumar, and Arindam Banerjee. Structured stochastic linear bandits. arXiv preprint arXiv:1606.05693, 2016.
- [4] Kwang-Sung Jun, Rebecca Willett, Stephen Wright, and Robert Nowak. Bilinear bandits with low-rank structure. In *International Conference on Machine Learning*, pages 3163–3172. PMLR, 2019.

- [5] Gi-Soo Kim and Myunghee Cho Paik. Doubly-robust lasso bandit. Advances in Neural Information Processing Systems, 32, 2019.
- [6] Tor Lattimore and Csaba Szepesvári. *Bandit algorithms*. Cambridge University Press, 2020.
- [7] Wenjie Li, Adarsh Barik, and Jean Honorio. A simple unified framework for high dimensional bandit problems. In *International Conference on Machine Learning*, pages 12619–12655. PMLR, 2022.
- [8] Min-hwan Oh, Garud Iyengar, and Assaf Zeevi. Sparsity-agnostic lasso bandit. In *International Conference on Machine Learning*, pages 8271–8280. PMLR, 2021.

The End