Role Bias in Diffusion Models: Diagnosing and Mitigating through Intermediate Decomposition

NeurIPS 2025

Sina Malakouti and Adriana Kovashka Computer Science Department, University of Pittsburgh

Limitation in compositional generalization

Attribute binding and spatial relation

Pink box on top of red box on top of blue box

Red banana and blue apple

Rare concept generation

Furry Frog

Mouse chasing cat

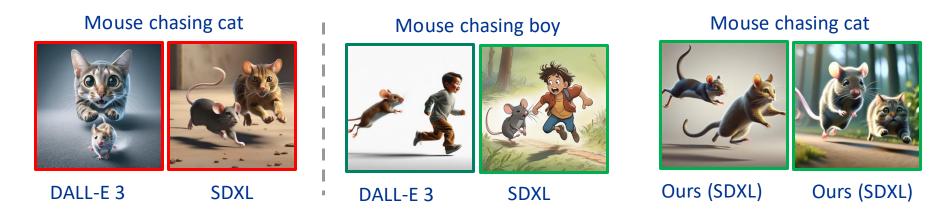
Action-Based Relation Generation

Cat chasing mouse

DALL-E 3

SDXL

Mouse chasing cat



DALL-E 3

SDXL

- T2I models fail in rare action-based relations
- Role collapse
 - They often default to their frequent counter parts

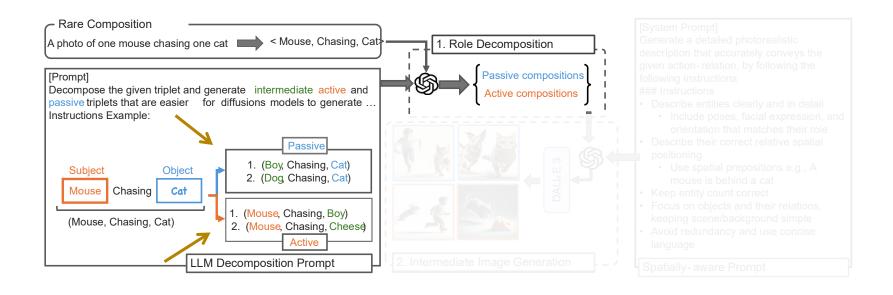
Overview

Observation

- Models can generate *similarly rare* relations that their frequent is not as dominant *Hypothesize*
- Over representation of frequent compositions impedes rare generation
- Similar but plausible composition can reinforce role binding

RoleBench

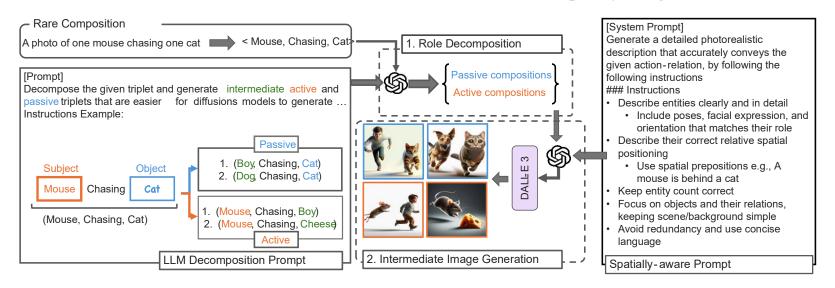
Benchmark


- 10 relations
 - chasing, riding, lifting, etc.
- Animate-animate interactions
- Rare relation whose reverse is frequent
 - Frequent: $c_F = (s_F, r, o_F)$ Rare: $c_R = (s_R = o_F, r, o_R = s_F)$
 - $p_D(c_F) \gg p_D(c_R)$
 - We use semantic plausibility as a proxy
- Role-binding & Direction
 - Requires assigning correct roles and direction

ReBind

- Step1: Role Decomposition
- Rare composition is decomposed into
 - **Active**: *subject* remains the same
 - **Passive**: *object* remains the same

- Intermediates must be plausibility (i.e., generatable)
 - LLM semantic plausibility
- Use active/passives to improve rare concept generation


ReBind

Step1: Role Decomposition

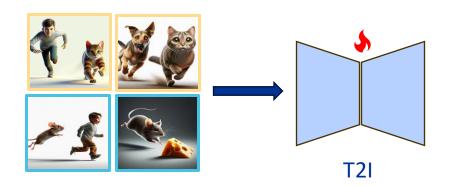
Rare composition is decomposed into active/passive intermediates

> Step2: Intermediate Generation

- Simple description (mouse chasing cat) is abstract
- Generate spatially-aware description of relation
 - Objects, spatial and non spatial attributes info
- Synthesize images via Dalle-3
 - We filter low quality images

ReBind

Step 1: Role Decomposition


Rare composition is decomposed into active/passive intermediates

Step 2: Intermediate Generation

Synthesize images via Dalle-3

Step 3: Finetuning

- Finetuning the model on synthetic images with LoRA
- λ : active role weight

$$\mathcal{L}(\theta) = \mathbb{E}_{(x_0, p) \sim \mathcal{D}, \epsilon, t} \left[\|\epsilon - \epsilon_{\theta}(z_t, p, t)\|_2^2 \right]$$

$$\mathcal{L}_{compos} = \lambda \cdot \mathcal{L}_{active} + \mathcal{L}_{passive}$$

Evaluation

Role Bias β for composition c

- Image-Text Alignment (ITA)
 - We use VQAScore (Lin et al., 2024)
- E.g., c = (mouse, chasing, cat)

$$eta = ext{ITA}$$
 , cat chasing mouse $ext{ - ITA}$

 $\beta = \text{ITA}(I, c^{rev}) - \text{ITA}(I, c)$

, mouse chasing cat

Role-Specific Questions

- Facial Expression, Spatial, Orientation, Pose
- E.g., Is the cat behind the mouse? (Yes/No)

Role collapse in pre-trained T2I models

- T2I models default to the freq. composition
 - Positive β on rare compositions

Category	T2I Model	Size	Spatial			Orientation			Pose			Facial Expression			VQAScore			Negative β
		(B)		U	$oldsymbol{eta}\downarrow$	M	U	$oldsymbol{eta}\downarrow$	M	U	$oldsymbol{eta}\downarrow$	M	U	$oldsymbol{eta}\downarrow$	M	U	$oldsymbol{eta}\downarrow$	
	SDXL	3.5	82.70	67.80	-14.90	76.10	68.60	-7.50	74.20	69.10	-5.10	81.80	70.30	-11.50	84.00	57.70	-26.30	
	SD3	2	80.20	65.10	-15.10	74.10	68.90	-5.20	71.50	64.20	-7.30	78.40	68.20	-10.20	82.60	53.30	-29.30	
	SD3.5	2.5	83.30	66.10	-17.20	76.10	68.90	-7.20	73.00	64.70	-8.30	81.20	69.60	-11.60	84.90	51.30	-33.60	
Frequent	AuraFlow2	6.8	87.20	69.10	-18.10	78.50	71.30	-7.20	76.90	69.10	-7.80	83.20	70.40	-12.80	84.40	60.80	-23.60	
	DALL-E 3	12	86.90	70.50	-16.40	78.30	70.20	-8.10	77.50	67.20	-10.30	80.60	67.80	-12.80	88.30	60.60	-27.70	Positive β
	SDXL	3.5	68.20	80.30	12.10	68.60	74.30	5.70	70.30	73.90	3.60	71.70	80.00	8.30	56.60	79.70	23.10	
	SD3	2	65.10	75.40	10.30	66.40	70.30	3.90	64.80	66.40	1.60	68.50	75.30	6.80	56.40	73.60	17.20	
	SD3.5	2.5	66.90	77.80	10.90	68.30	72.60	4.30	65.90	69.00	3.10	72.70	79.10	6.40	59.50	80.40	20.90	
Rare	AuraFlow2	6.8	72.90	83.70	10.80	71.80	77.60	5.80	75.10	77.90	2.80	76.60	83.60	7.00	74.60	84.70	10.10	
	DALL-E 3	12	74.90	84.10	9.20	71.30	75.60	4.30	73.00	76.50	3.50	73.60	78.10	4.50	68.90	84.90	16.00	

 $\beta = VQAScore$ (unmatching) – VQAScore (matching) M: matching, U: unmatching

Role collapse through attentions

Token: <riding>

Token: <riding>

rare frequent

Token: <riding>

Token: <riding>

Frequent

Images are generated by Stable Diffusion 3 Medium

Role Collapse in compositional methods

- Compositional generation methods are not effective
 - Expensive: Spatial prior, cross-attention manipulation, LLM guided generation
 - Don't resolve existing bias and model may not follow spatial prior
- ReBind is more effective
 - Especially on non-spatial (Facial Expression)

Model	Spatial			Orientation			Pose			Faci	ial Ex	pression	VQAScore			
	M	U	$oldsymbol{eta}\downarrow$	M	U	$oldsymbol{eta}\downarrow$	M	U	$oldsymbol{eta}\downarrow$	M	U	$oldsymbol{eta}\downarrow$	M	U	$oldsymbol{eta}\downarrow$	
DALL-E 3	74.9	84.1	9.2 -	71.3	75.6	4.3 -	73.0	76.5	3.5 -	73.6	78.1	4.5 -	68.9	84.9	16.0 -	
SDXL	68.2	80.3	12.1 -	68.6	74.3	5.7 -	70.3	73.9	3.6 -	71.7	80.0	8.3 -	56.6	79.7	23.1 -	Low improvement
IterComp	66.8	80.3	13.5 (-1.4)	68.4	75.3	6.9 (-1.2)	68.5	72.5	4.0 (-0.4)	70.0	80.3	10.3 (-2.0)	59.2	81.4	22.2 (0.9)	Low improvement
RRNet	68.2	76.8	8.6 (3.5)	67.5	71.2	3.7 (2.0)	69.1	72.2	3.1 (0.5)	71.0	74.7	3.7 (4.6)	61.2	76.3	15.1 (8.0)	
R2F	68.0	79.4	10.7 (1.4)	68.0	73.4	5.4 (0.3)	71.0	74.4	3.4 (0.2)	71.9	79.3	7.4 (0.9)	43.4	59.1	15.7 (7.4)	
RPG	65.4	74.3	8.9 (3.2)	66.6	70.6	4.0 (1.7)	63.7	66.7	3.0 (0.6)	67.3	75.8	8.5 (-0.2)	56.6	73.3	16.7 (6.4)	
SLD	68.4	75.1	6.7 (5.0)	67.2	70.1	2.9 (2.8)	67.2	70.0	2.8 (0.8)	69.8	74.9	5.0 (3.3)	56.8	73.4	16.6 (6.5)	
ReBind	68.5	75.5	7.0 (5.1)	66.0	69.6	3.6 (2.1)	73.3	76.5	3.2 (0.4)	67.7	70.2	2.5 (5.8)	57.9	65.8	7.9 (15.2)	
							-									

 β = VQAScore (unmatching) – VQAScore (matching)

M: matching, U: unmatching

Is ReBind effective?

Mouse chasing cat

Horse riding astronaut

Baby feeding food to a woman

Scientist carrying fireman

Monkey lifting zoo trainer

Is ReBind effective?

- Humans compare ReBind and baselines in a head-to-head manner
 - Compare top-3 output of models selected by β
- Training on intermediate compositions is significantly more effective

Thank you so much for your attention!

