A Differential and Pointwise Control Approach to Reinforcement Learning

Minh Nguyen Chandrajit Bajaj

University of Texas at Austin

November 6, 2025

Table of Content

- Introduction
- Pormulation
- S Experiments
- Theory

2/16

Motivation

000

- Reinforcement Learning (RL) made strong progress in domains like robotics, biology, and language. But in scientific applications with limited data, RL struggles due to:
 - 1 low sample efficiency,
 - 2 weak alignment with physical laws, and
 - 3 limited theoretical guarantees.
- Even with reward shaping. Model-free RL struggles with sample efficiency and lacks built-in physics priors.
- **Model-based RL** can be more sample-efficient, but usually requires either:
 - access to exact reward functionals and/or their gradients, or
 - the ability to restart or modify trajectories mid-run.
- New approach: RL ⇒ continuous-time control formulation ⇒ Hamiltonian differential dual ⇒ final algorithm to solve this dual.
 - ⇒ physics priors, sample-efficient policy updates, and pointwise learning.

Physics Intuition: From Newton to Hamiltonian Dual Control

- Newton's law $F = m\ddot{s}$ describes motion via forces.
- Lagrangian mechanics reformulates it through energies and the principle of stationary action:

$$S[s] = \int_0^T \mathcal{L}(s, \dot{s}, t) dt, \quad \frac{\partial \mathcal{L}}{\partial s} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{s}} \quad \text{(Euler-Lagrange)}. \tag{1}$$

For $\mathcal{L} = \frac{1}{2}m\|\dot{s}\|^2 - \mathcal{V}(s)$, this reduces to Newton's second law $m\ddot{s} = -\nabla\mathcal{V}(s)$.

• Viewing velocity as control, $a = \dot{s}$, Lagrangian mechanics is a continuous-time control problem:

$$V(s,t) = \max_{a(\cdot)} \int_{t}^{T} -\mathcal{L}(w,a,u) \, du \quad \text{s.t. } \dot{w} = a, \ w(t) = s.$$
 (2)

- Hamiltonian mechanics is the dual of Lagrangian mechanics, where value gradients act as momenta and dynamics unfold through symplectic flow.
- Through control theory, our differential-learning duality generalizes this physics correspondence and provides the bridge to continuous-time RL.

000

Revisit to TD error

000

For $s' = s + \Delta_t f(s, a)$, first-order expansion with $\Delta_t = 1$:

$$\underbrace{r(s,a) + V(s') - V(s)}_{\text{TD error}} \approx r(s,a) + f(s,a) \frac{\partial V}{\partial s}(s) = -\mathcal{H}(s, -\frac{\partial V}{\partial s}(s), a)$$
(3)

- The critic's local TD signal is (minus) the Hamiltonian at the value gradient.
- In the $\Delta_t \to 0$ limit: coincides with continuous-time *q*-function (Jia and Zhou 2023).
- Suggests local, physics-aligned learning targets.

Differential Control Formulation

From discrete reward to continuous control:

$$\max_{\pi} \mathbb{E}\left[\sum_{k=0}^{H-1} r(s_k, a_k)\right] \Rightarrow \max_{\pi} \mathbb{E}\left[\int_0^T r(s_t, a_t) dt\right] \quad \text{s.t. } \dot{s}_t = f(s_t, a_t; \epsilon)$$
 (4)

Pontryagin dual system: Hamiltonian form

- Define Hamiltonian: $\mathcal{H}(s, p, a) := p^{\top} f(s, a) r(s, a)$
- First-order optimality and reduced Hamiltonian: $a^*(s,p)$: $\frac{\partial \mathcal{H}}{\partial a} = 0$, and $h(s,p) = \mathcal{H}(s,p,a^*)$
- Dual dynamics: $\dot{s} = \frac{\partial h}{\partial p}$, $\dot{p} = -\frac{\partial h}{\partial s}$.
- In compact form with x = (s, p) and symplectic $S = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$:

$$\dot{x} = S \,\nabla h(x) \quad \Rightarrow \quad x_{n+1} = x_n + \Delta_t S \,\nabla h(x_n) \tag{5}$$

Reinforcement learning and an abstract problem ${\cal D}$

Reframe RL as learning a dynamics operator $G: x \mapsto x + \Delta_t S \nabla g(x)$ such that $x, G(x), \ldots, G^{(H-1)}(x)$ trace an optimal trajectory. G can be called a policy

$$G = \operatorname{Id} + \Delta_t \, S \, \nabla g \tag{6}$$

- $g(x) \approx h(x)$ is a learnable *score* over the extended phase space.
- Query environment B
 - Given a policy (approximation) G_{θ} , and starting point/seed $x \sim \rho_0$, \mathcal{B} returns rollout of $\left\{G_{\theta}^{(k)}(x), \ g(G_{\theta}^{(k)}(x))\right\}_{k=0}^{H-1}$.
 - Enables learning from trajectory segments + scores
- Physics prior via S while remaining model-free wrt reward gradients.

Solution to abstract problem ${\mathcal D}$

Algorithm dfPO (stage-wise, Dijkstra-like time expansion)

- 1: Initialize replay queue \mathcal{M} ; random g_{θ_0} ; set $G_{\theta_0} = \mathrm{Id} + \Delta_t S \nabla g_{\theta_0}$
- 2: **for** k = 1 to H 1 **do**
- 3: Query \mathcal{B} with $G_{\theta_{k-1}}$ at N_k seeds $\{X^i\}$ to get trajectories and scores
- 4: Add $(x,y) = (G_{\theta_{k-1}}^{(k-1)}(X^i), g(\cdot))$ to \mathcal{M}
- 5: Add stability samples $(G_{\theta_{k-1}}^{(j)}(X^i), g_{\theta_{k-1}}(\cdot))$ for j < k-1
- 6: Fit g_{θ_k} on $\mathcal M$ with smooth L^1 loss; set $G_{\theta_k} = \operatorname{Id} + \Delta_t S \nabla g_{\theta_k}$
- 7: Output: $G_{\theta_{H-1}} = \operatorname{Id} + \Delta_t S \nabla g_{\theta_{H-1}}$
 - Trust-region flavor via pointwise random samples
 - Policy, dynamics and rewards related through gradient (automatic differentiation)

Experimental Setups

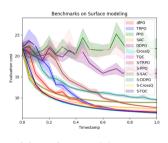
Representative tasks across scientific domains.

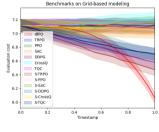
- (1) Surface Modeling (single object-level): Control the geometry of an individual structure (e.g., airfoils, mechanical parts) via surface control points. Objectives include smoothness, curvature, and stress.
- (2) Grid-Based Modeling (system-level): Macro-scale physical systems governed by PDEs. Coarse controls act on low-res grids; evaluation uses fine-grid PDE solvers.
- (3) Molecular Dynamics (atomistic scale): Directly control atomic-scale systems governed by complex, nonlocal energy landscapes.

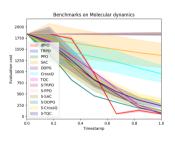
Setup.

- Baselines (12 total): TRPO, PPO, SAC, DDPG, CrossQ, TQC for both standard reward $r(s) = -\mathcal{F}(s)$ and reward reshaping $r(s, a) = \beta^{-t}(\frac{1}{2}||a||^2 \mathcal{F}(s))$
- Sample Budgets: 100k steps for first 2 tasks and 5k steps for the last (due to high simulation cost)
- Evaluation Metrics: Terminal cost $\mathcal{F}(s)$ (lower is better).

Results: visualization







(a) Surface modeling

(b) Grid-based modeling

(c) Molecular dynamics

Figure: Evaluation costs over episodes for 13 algorithms on 3 scientific computing tasks. dfPO (red curves) consistently achieves lower costs with more optimal and physically aligned trajectories.

Results: numerical (lower is better)

Numerical results:

			S	tandard	Algorith	Reward-Shaping Variants							
Task	dfPO	S-TRPO	S-PPO	S-SAC	S-DDPG	S-CrossQ	S-TQC	TRPO	PPO	SAC	DDPG	CrossQ	TQC
Surface	6.32	7.74	19.17	8.89	9.54	6.93	6.51	6.48	20.61	7.41	15.92	6.42	6.67
Grid	6.06	6.48	7.05	7.17	6.68	7.07	6.71	7.10	7.11	7.00	6.58	7.23	7.12
Mol.	53.34	1842.30	1842.30	126.73	82.95	338.07	231.98	1842.28	1842.31	1361.31	68.20	923.90	76.87

Highlights:

- dfPO attains the best (lowest) terminal costs on all 3 tasks; next-best varies (CrossQ/TQC/DDPG/TRPO).
- Reward-shaping generally helps baselines but remains below dfPO.
- Visualization: dfPO explores to lower costs with moderate variance with pattern similar to TRPO;
 SAC smooth but biased; PPO underperforms.

Pointwise Convergence

Derivative-transfer objective: Learn g_{θ_k} such that $G_{\theta_k} = \operatorname{Id} + \Delta_t S \nabla g_{\theta_k}$ approximates $G = \operatorname{Id} + \Delta_t S \nabla g$ pointwise.

Theorem (Pointwise convergence). Assume G, G_{θ_k} are L-Lipschitz and budgets N_k satisfy stagewise transfer criteria. Then with probability $\geq 1 - \delta$:

$$\mathbb{E}_{X} \| G_{\theta_{k}}^{(j)}(X) - G^{(j)}(X) \| < \frac{jL^{j}\epsilon}{L-1} \quad (1 \le j \le k)$$
 (7)

Key idea: 3-term decomposition (at stage k + 1):

$$\begin{split} \mathbb{E}\|G_{\theta_{k+1}}^{(k+1)}(X) - G^{(k+1)}(X)\| &\leq \|G_{\theta_{k+1}}(G_{\theta_{k}}^{(k)}(X)) - G_{\theta_{k+1}}(G_{\theta_{k}}^{(k)}(X))\| + \|G_{\theta_{k+1}}(G_{\theta_{k}}^{(k)}(X)) - G(G_{\theta_{k}}^{(k)}(X))\| \\ &+ \|G(G_{\theta_{k}}^{(k)}(X)) - G(G^{(k)}(X))\| \\ &\leq L\underbrace{\|G_{\theta_{k+1}}^{(k)}(X) - G_{\theta_{k}}^{(k)}(X)\|}_{\text{replay drift}} + \underbrace{\|G_{\theta_{k+1}}(G_{\theta_{k}}^{(k)}(X)) - G(G_{\theta_{k}}^{(k)}(X))\|}_{\text{supervised error}} + L\underbrace{\|G_{\theta_{k}}^{(k)}(X) - G^{(k)}(X)\|}_{\text{inductive propagation}} \end{split}$$

Goal. Bound cumulative regret: Regret(K) = $\sum_{k=1}^{K} (V(s^k) - V_{\pi^k}(s^k))$ using stagewise sample budgets $N_k = \mathcal{O}(\epsilon^{-\mu})$ with fixed rollout horizon H.

Stagewise Sample Budget. Let $N(g, \mathcal{H}, \epsilon, \delta)$ be the minimal number of samples required to train $h \in \mathcal{H}$ on $X \sim \rho_0$ such that $\mathbb{P}(\|\nabla g(X) - \nabla h(X)\| < \epsilon) \ge 1 - \delta$. Then define:

$$N_1 = N(g, \mathcal{H}_1, \epsilon, \delta), \quad N_k = \max \left\{ N(g_{\theta_{k-1}}, \mathcal{H}_k, \epsilon, \delta_{k-1}/(k-1)), N(g, \mathcal{H}_k, \epsilon, \delta_{k-1}/(k-1)) \right\}$$
(8)

Two Hypothesis Settings:

• **General** \mathcal{H}_k : usual neural network class, $g, h \in C^2$ with bounded weights

$$N_k = \mathcal{O}(\epsilon^{-(2d+4)}) \Rightarrow \text{Regret}(K) = \mathcal{O}(K^{(2d+3)/(2d+4)})$$
 (9)

• Restricted \mathcal{H}_k : $h - g_k$ is linearly bounded and p-weakly convex, $p \ge 2d$

$$N_k = \mathcal{O}(\epsilon^{-6}) \Rightarrow \text{Regret}(K) = \mathcal{O}(K^{5/6})$$
 (10)

Experiments

Sketch. Sample complexity \Rightarrow pointwise generalization bound $\Rightarrow \mathcal{O}(\epsilon)$ per-step loss \Rightarrow regret via H-step rollout across K episodes. Next: we show how these N_k bounds arise under the two settings (next 2 slides).

Setting 1: General \mathcal{H}_k , $\mathcal{N}_k = \mathcal{O}(\epsilon^{-(2d+4)})$

Goal: Control $\|\nabla h - \nabla g\|$ via pointwise bounds on |h - g|.

Flow: Local bounds on |h-g| at random samples X_1, \dots, X_m and $Y \Rightarrow$ gradient control at anchor $Y \Rightarrow$ global expectation via Rademacher complexity \Rightarrow Yields dimension-dependent rate: $N_k = \mathcal{O}(\epsilon^{-(2d+4)})$.

• Second-order Taylor expansion: around random anchor Y and nearby X_k for one of $k \in \overline{1, m}$:

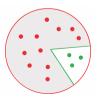
$$h(X_k) - g(X_k) \approx h(Y) - g(Y) + \langle \nabla h(Y) - \nabla g(Y), X_k - Y \rangle + \mathcal{O}(\|X_k - Y\|^2)$$
(11)

- Bound gradient gap: Since $|h(X_k) g(X_k)|$ and |h(Y) g(Y)| is small, if the gradient gap $\|\nabla h(Y) \nabla g(Y)\|$ can be upper-bounded by $\langle \nabla h(Y) \nabla g(Y), X_k Y \rangle$, then the gap is small.
- Conic technique: probabilistically provide such an upper-bound inequality

$$\langle \nabla h(Y) - \nabla g(Y), X_k - Y \rangle \ge (1 - \epsilon_2) \|\nabla h(Y) - \nabla g(Y)\| \|X_k - Y\|$$

This holds when $X_k - Y$ is well-aligned with $\nabla h(Y) - \nabla g(Y)$, i.e., falls inside a narrow favorable green cone and avoids the wide gray-red region (see figure).

• Cone hit probability: For $||X_k - Y|| \in [\epsilon_1/2, \epsilon_1]$, the chance of hitting the favorable cone is at least $c_1\epsilon_1^d\epsilon_2$, so $m = \mathcal{O}(\epsilon_1^{-d})$ suffices.



Setting 2: Restricted \mathcal{H}_k , $N_k = \mathcal{O}(\epsilon^{-6})$

Assumptions. h - g is both linearly bounded and p-weakly convex with $p \ge 2d$:

$$|u(y) - u(x)| \le C \|\nabla u(x)\| \|y - x\|$$
 (linearly bounded)
$$u(y) \ge u(x) + \nabla u(x)^{\top} (y - x) - C \|y - x\|^{p}$$
 (weakly convex)

Inductive Scheme. At each step k, aim to incrementally bound $\|\nabla h - \nabla g\| \lesssim \epsilon^{\beta_k}$ at anchor points using losses:

$$\phi_k(y,\hat{y}) = \operatorname{clip}(|y - \hat{y}|, 0, C\epsilon^{\alpha + \beta_k})^d, \qquad \alpha = 1/d$$
(12)

Main Steps.

- 1 Use weak convexity + linear bound + conic argument from Setting 1 to convert |h g| at nearby points into first-order control at Y.
- **2** Apply Rademacher complexity bounds to the previous inequalities via Lipschitz coefficients of ϕ_k .
- **3** From here, inductively shows: $\beta_{k+1} = \beta_k + 1/d \Rightarrow$ finer bound: $\|\nabla h(Y) \nabla g(Y)\| \le C\epsilon^{\alpha + \beta_{k+1}}$.
- **4** After *d* steps, $\beta_d = 1 \Rightarrow N = \mathcal{O}(\epsilon^{-6})$, independent of *d*.

Two Settings: Rates and Assumptions

- In continuous domains, under mild Lipschitz–MDP conditions, the minimax lower bound is $\Omega(K^{\frac{d+1}{d+2}})$ (Slivkins 2024). Our regret $\mathcal{O}(K^{\frac{2d+3}{2d+4}})$ in general case (Setting 1) is reasonable and surprisingly close, despite using a very different approach.
- Faster, dimension-free rates require stronger smoothness assumptions (e.g., Maran et al. 2024; Vakili and Olkhovskaya 2023).
- Our **linearly bounded** assumption is mild: it holds for any Lipschitz h, g outside the zero-gradient region, which has measure zero if h g is C^{∞} (covering argument \Rightarrow satisfy).
- The weak convexity condition holds for convex functions and neural networks with convex activations (e.g., ReLU). The Hamiltonian structure can further be used to establish this condition, making C^{∞} smoothness a candidate under our setting. Tighter rates and less restricted assumptions can be achieved with further refinement of our proof.

Conclusion

- 1 Differential Reinforcement Learning (Differential RL) reinterprets RL through the lens of continuous-time control theory with Hamiltonian dual formulation, offering:
 - Physics priors
 - Sample efficiency
 - Pointwise updates
- 2 We instantiate this framework via Differential Policy Optimization (dfPO):
 - $\mathcal{O}(K^{5/6})$ regret bound with pointwise convergence guarantees.
 - Strong empirical gains over RL baselines on scientific domains across physical scales: object-level, macroscopic system-level, and atomistic-level control tasks.
- **§** Future directions: Adaptive discretization, broader applicable domains, more unified framework bridging RL and control theory.

Acknowledgments: Supported by the Peter O'Donnell Foundation, Michael J. Fox Foundation, Jim Holland–Backcountry Foundation (Al in Parkinson's), and Army Research Office (W911NF-19-2-0333).

References (Part I)

- Jia, Yanwei and Xun Yu Zhou (2023). "q-Learning in Continuous Time". In: Journal of Machine Learning Research 24.161, pp. 1–61.
- Fleming, Wendell H and H Mete Soner (2006). Controlled Markov processes and viscosity solutions. en. 2nd. New York, NY: Springer.
- Wang, Haoran, Thaleia Zariphopoulou, and Xun Yu Zhou (2020). "Reinforcement Learning in Continuous Time and Space: A Stochastic Control Approach". In: *Journal of Machine Learning Research* 21.198, pp. 1–34.
- Schulman, John et al. (July 2015). "Trust Region Policy Optimization". In: *Proceedings of the 32nd International Conference on Machine Learning*. Vol. 37. Proceedings of Machine Learning Research. Lille, France: PMLR, pp. 1889–1897.
- Maran, Davide et al. (2024). "Local Linearity: the Key for No-regret Reinforcement Learning in Continuous MDPs". In: *Advances in Neural Information Processing Systems*. Ed. by A. Globerson et al. Vol. 37. Curran Associates, Inc., pp. 75986–76029.
- Slivkins, Aleksandrs (2024). "Introduction to Multi-Armed Bandits". In: arXiv preprint arXiv:1904.07272. arXiv: 1904.07272 [cs.LG].

References (Part II)

- Vakili, Sattar and Julia Olkhovskaya (2023). "Kernelized Reinforcement Learning with Order Optimal Regret Bounds". In: *Advances in Neural Information Processing Systems*. Ed. by A. Oh et al. Vol. 36. Curran Associates, Inc., pp. 4225–4247.
- Zhao, Hanyang, Wenpin Tang, and David Yao (2023). "Policy Optimization for Continuous Reinforcement Learning". In: *Advances in Neural Information Processing Systems*. Ed. by A. Oh et al. Vol. 36. Curran Associates, Inc., pp. 13637–13663.
- Kirk, Donald E (1971). Optimal Control Theory: An Introduction. en. London, England: Prentice-Hall.
- Bajaj, Chandrajit, Minh Nguyen, and Conrad Li (2025). "Reinforcement Learning for Molecular Dynamics Optimization: A Stochastic Pontryagin Maximum Principle Approach".
 In: Neural Information Processing. Singapore: Springer Nature Singapore, pp. 310–323.
- Bajaj, Chandrajit and Minh Nguyen (2024). "Physics-Informed Neural Networks via Stochastic Hamiltonian Dynamics Learning". In: *Intelligent Systems and Applications*. Springer Nature Switzerland, pp. 182–197.