LoLa: An Empirical Study of Latent Diffusion Models for Physics Emulation

François Rozet, Ruben Ohana, Michael McCabe, Gilles Louppe, François Lanusse, Shirley Ho

Polymathic

arXiv:2507.02608

polymathicai/lola

TL;DR We show that latent diffusion models are surprisingly robust to compression (up to $1000\times$) for physics emulation, and consistently outperform their non-generative and pixel-space counterparts.

Research question

Numerical simulations of **dynamical systems** are ubiquitous in science and engineering but require significant computational resources.

$$x^1 \xrightarrow{x^{i+1} = f_{\theta}(x^i)} x^2 \longrightarrow \cdots \longrightarrow x^L$$

A widespread strategy is to train a neural network, called neural solver (NS), to approximate the dynamics f_{θ} orders of magnitude faster than numerical solvers. However, **neural solvers suffer from long-term instability issues** and cannot model uncertainty.

Recently, diffusion models (DMs) were found to mitigate the instability of non-generative emulators. However, they are slow at inference.

For images and videos, it is known that **generating** in the latent space of an autoencoder leads to both quality and efficiency improvements.

But does this carry to dynamical systems?

Method	Time
simulator	O(10 s)
NS	56 ms
latent NS	13 ms
DM	O(1 s)
latent DM	84 ms

Methodology

For 3 datasets from **The Well**, we train DCAE-like autoencoders (E_ψ, D_ψ) with **multiple compression rates** (e.g. 64, 256, 1024). We then train DiT-like diffusion models and neural solvers to predict the next n=4 latent states $z^{i+1:i+n}$ given the current state $z^i=E_\psi(x^i)$.

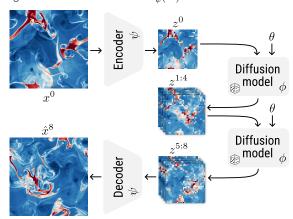


Figure 2. Illustration of latent autoregressive rollout.

Qualitative results

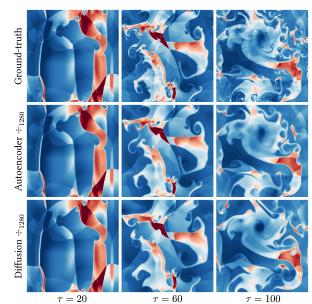


Figure 3. Example of latent emulation for the Euler Quadrants dataset. Even at large compression rates (÷), LDMs **reproduce the dynamics faithfully**, despite significant reconstruction artifacts.

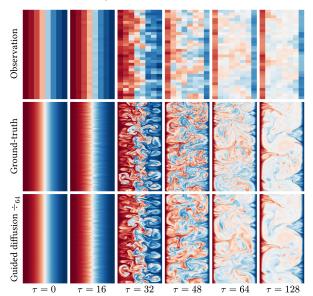


Figure 4. Example of guided emulation for the Rayleigh-Bénard dataset. (L)DMs **enable to incorporate additional information** at inference.

Quantitative results

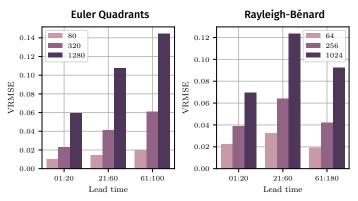


Figure 5. Average VRMSE of the autoencoders' reconstruction. The compression rate has a clear impact on reconstruction quality.

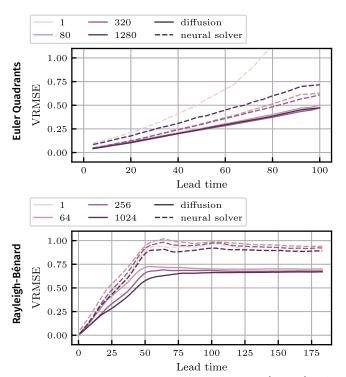


Figure 6. Emulation error grows with the lead time but **increasing the compression rate does not degrade the accuracy** of LDMs.