

70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float (DFloat11)

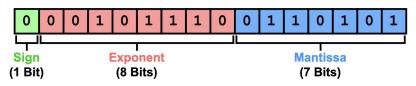
Limitations of Existing Compression Algorithms

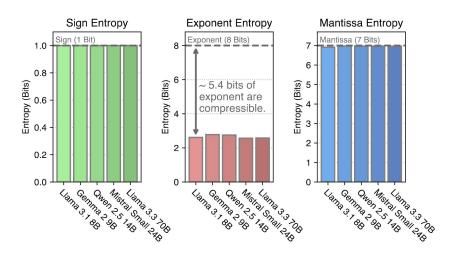
Large Language Models (LLMs) and Diffusion Models (DMs) are large (GBs to TBs) and memory-intensive.

Existing lossy model compression methods (quantization, pruning, etc.) → tradeoffs between model quality and compression factor

- Accuracy & performance degradations
- Model behavior changes (flips^[1])

Existing lossless compression (lossless encoding) → does not support GPU inference

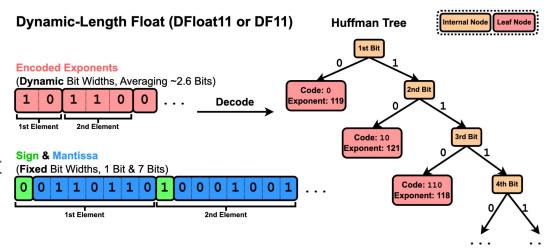

BFloat16 & Its Inefficiency


Foundation models predominantly use BFloat16

Our Insight: Low entropy in BFloat16 exponents

- Real entropy vs. allocated bit width: 2.6
 bits vs. 8 bits
- Significant potential for lossless compression!

Brain Float (BFloat16 or BF16)


Lossless Compression via Huffman Coding

Huffman coding^[1]

- Prefix-free binary tree
- Guaranteed lossless
- Information optimal for any given frequency distribution

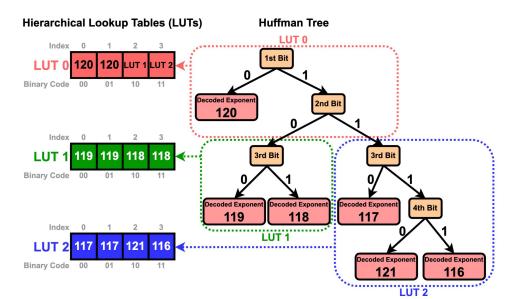
Our proposal: Dynamic-Length Float (DFloat11)

- Huffman coding on BFloat16 exponents
- Pack signs and mantissas tightly

Core Challenge: GPU Inference with Dynamic-Length Float

GPUs are

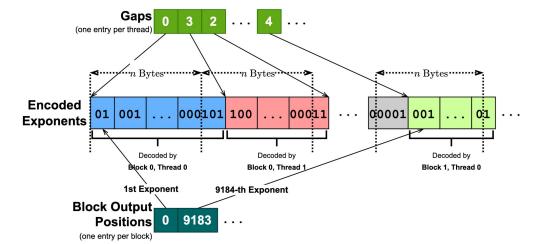
- Massively parallel
- Inefficient at branching


Dynamic-Length Float

- Variable-length encodings → difficult to coordinate GPU threads
- Binary-tree-based decoding → not suitable for GPU computation

Our Solution: Hardware-aware Algorithmic Designs

Technique #1 — Decoding Huffman codes via hierarchical lookups


- Use lookups instead of binary tree traversal
- Decompose the monolithic lookup table (LUT) into compact LUTs

Our Solution: Hardware-aware Algorithmic Designs

Technique #2 — Two-phase Kernel for Thread Coordination

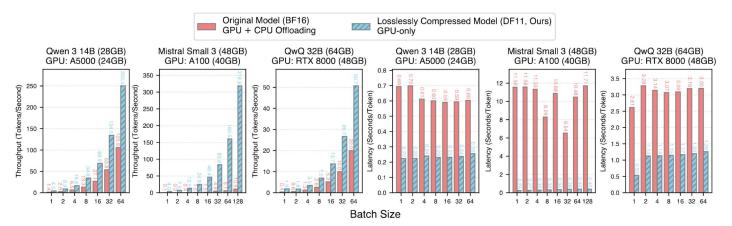
- Use thread-level gap arrays and block-level output-position arrays to determine the bit position
- Phase 1 count the number of decoded elements, and synchronize threads
- Phase 2 write the decoded elements to memory

Our Solution: Hardware-aware Algorithmic Designs

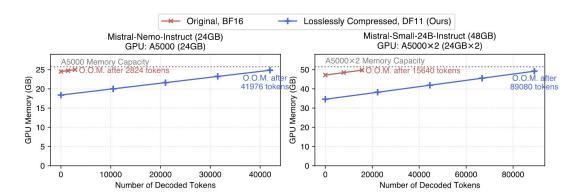
Technique #3 — Transformer-block level decompression

- More data to decompress at once → better GPU utilization → higher throughput
- Batch the decompression of all matrices in a transformer block

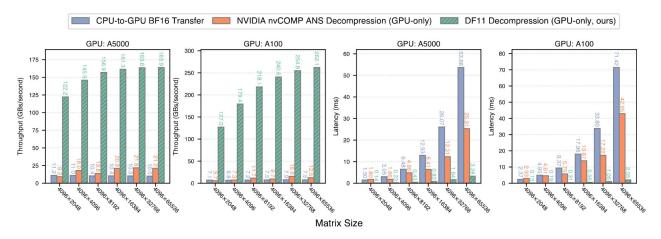
32% Size Reduction, 0 Accuracy Loss

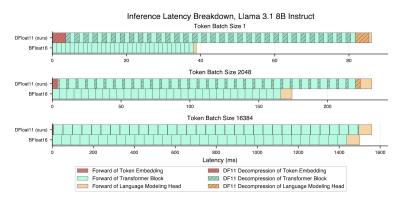

Table 1: DF11 statistics for various models. Model sizes are shown before and after compression.

Model	$ \ \textbf{Original} \rightarrow \textbf{DF11} \ \textbf{Compressed}$	Compression Ratio	Avg. Bit Width	
Llama 3.1 8B Instruct Llama 3.3 70B Instruct Llama 3.1 405B Instruct	16.06 GB \rightarrow 10.90 GB 141.11 GB \rightarrow 95.40 GB 811.71 GB \rightarrow 551.22 GB	67.84% 67.61% 67.91%	10.85 10.82 10.87	
Qwen 3 14B QwQ 32B Mistral Nemo Instruct Mistral Small 3 Phi 4 Reasoning Plus DeepSeek R1 Distill Llama 8B	29.54 GB \rightarrow 20.14 GB 65.53 GB \rightarrow 44.65 GB 24.50 GB \rightarrow 16.59 GB 47.14 GB \rightarrow 31.86 GB 29.32 GB \rightarrow 19.83 GB 16.06 GB \rightarrow 10.89 GB	68.17% 68.14% 67.74% 67.58% 67.64% 67.81%	10.87 10.91 10.90 10.84 10.81 10.82 10.85	
- DeepSeek KT Distill Elailia 6B	07.0176	10.03		
FLUX.1 dev FLUX.1 schnell Stable Diffusion 3.5 Large	23.80 GB \rightarrow 16.33 GB 23.78 GB \rightarrow 16.31 GB 16.29 GB \rightarrow 11.33 GB	68.61% 68.58% 69.52%	10.98 10.97 11.12	


Table 2: Comparison of accuracy and perplexity for the BF16 and DF11 models on different benchmarks. DF11 compression results in absolutely no loss in accuracy or perplexity.

		Accuracy		Perplexity	
Model	Data Type	MMLU	TruthfulQA	WikiText	C4
Llama 3.1 8B Instruct	BF16 DF11 (Ours)	$68.010 \pm 0.375 \\ 68.010 \pm 0.375$	36.965 ± 1.690 36.965 ± 1.690	8.649 8.649	21.677 21.677


2.31—46.24× Faster Than Offloading


5.70—14.86× Longer Context Length

20.97× Faster Than NVIDIA nvCOMP

Negligible Decompression Overhead at Large Batch Size

Thank you

