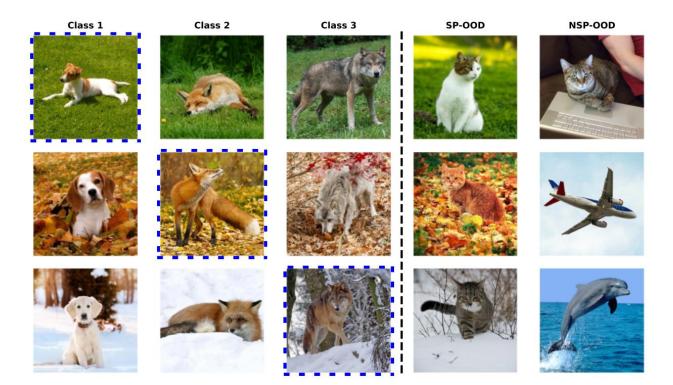
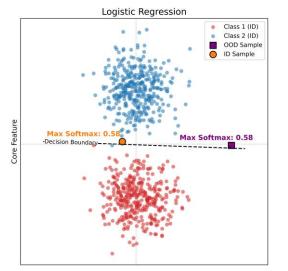


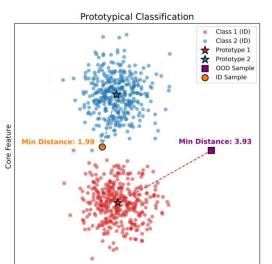
Spurious-Aware Prototype Refinement for Reliable Out-of-Distribution Detection

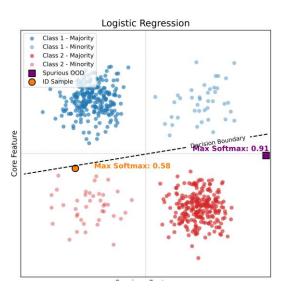
Reihaneh Zohrabi*, Hosein Hasani*, Mahdieh Soleymani, Anna Rohrbach, Marcus Rohrbach, Mohammad Hossein Rohban


TU Darmstadt, Sharif University of Technology

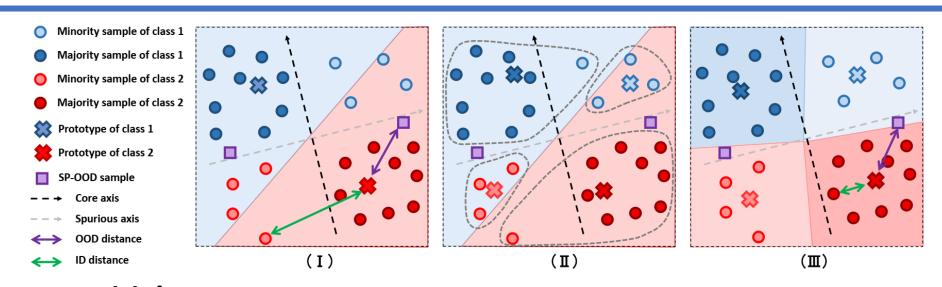
NeurIPS 2025


Problem Definition & Background


- OOD Detection: Identify inputs outside the training distribution.
- Spurious Features: Irrelevant cues learned by models.
- SP-OOD: OOD samples sharing spurious cues with in-distribution data.



Motivation: Score Calculation


- Score Calculation: a scalar score S(x) that separates ID and OOD samples.
- Two Perspectives:
 - **Discriminative**: defining score based on p(y|x); e.g. softmax probabilities.
 - **Generative**: defining score based on p(x|y); e.g. distance from prototypes.
- Discriminative approach has certain failure cases.

SPROD Overview

- Stage 1 Initial Prototypes:
 Compute class prototypes from training features.
- Stage 2 Classification-Aware Prototypes:
 Separate correctly and incorrectly classified samples to capture feature bias.
- Stage 3 Group Prototype Refinement:
 Reassign samples and refine prototypes to reduce spurious influence.

Experimental Setup & Datasets

• Baselines:

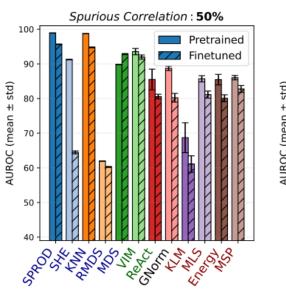
Compared with 19 post-hoc OOD detection methods.

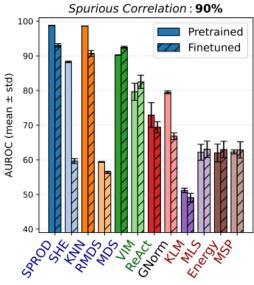
• Backbones:

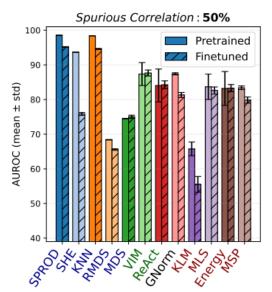
Primarily ResNet-50; **10** different backbones in total.

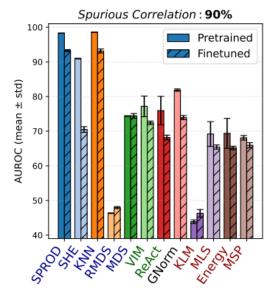
- Metrics: AUROC and FPR@95, AUPR.
- SP-OOD Benchmarks:

Waterbirds, CelebA, UrbanCars, Spurious ImageNet, and Animals MetaCoCo.

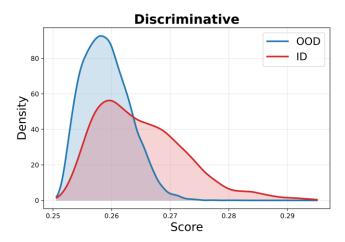

Results: SP-OOD benchmarks

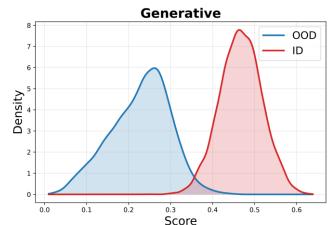

• Comparative performance of **post-hoc OOD detection methods** on SP-OOD benchmarks using a **ResNet-50** backbone.

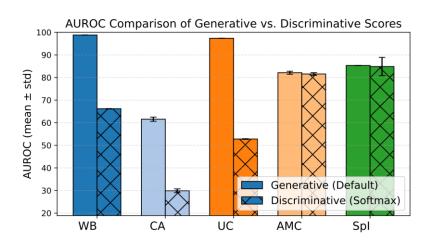

	FPR@95↓												
Method	WB	CA	UC	AMC	SpI	Avg.	Method	WB	CA	UC	AMC	SpI	Avg.
MSP[7]	$62.3{\scriptstyle\pm0.6}$	$46.0_{\pm 1.4}$	$38.5{\scriptstyle\pm0.3}$	$79.7_{\pm 0.4}$	$83.1_{\pm 0.3}$	61.9	MSP 7	$87.9_{\pm 0.8}$	$98.7_{\pm0.5}$	$97.3_{\pm0.3}$	$83.8_{\pm 0.7}$	$74.1_{\pm 1.2}$	88.4
Energy 13	$62.0_{\pm 2.6}$	$45.4_{\pm 3.4}$	$38.4_{\pm 2.1}$	$79.9_{\pm 0.6}$	$80.6_{\pm 0.4}$	61.3	Energy 13	$89.2_{\pm 3.2}$	$98.6_{\pm 0.7}$	$95.5_{\pm 3.1}$	$84.8_{\pm 0.8}$	$76.3_{\pm 0.9}$	88.9
MLS[44]	$62.2_{\pm 2.3}$	$45.3_{\pm 3.2}$	$38.4_{\pm 1.4}$	$80.2_{\pm 0.6}$	$81.9_{\pm 0.3}$	61.6	MLS 44	$88.1_{\pm 2.0}$	$98.8_{\pm 0.6}$	$96.7_{\pm 2.0}$	$84.4_{\pm 0.8}$	$74.6_{\pm 0.9}$	88.5
KLM 44	$51.2_{\pm 0.7}$	$41.7_{\pm 2.5}$	$57.0_{\pm 0.2}$	$74.2_{\pm 0.6}$	$79.6_{\pm 0.8}$	60.7	KLM 44	$89.1_{\pm 0.7}$	$98.7_{\pm 0.5}$	$97.1_{\pm 0.3}$	$80.5_{\pm 0.8}$	$76.1_{\pm 1.7}$	88.3
GEN 45	$62.3_{\pm 0.6}$	$46.0_{\pm 1.4}$	$38.5_{\pm 0.3}$	$80.2_{\pm 0.0}$	$80.8_{\pm 0.4}$	61.6	GEN 45	$87.9_{\pm 0.8}$	$98.7_{\pm 0.5}$	$97.3_{\pm 0.3}$	$84.8_{\pm0.1}$	$76.3_{\pm 0.7}$	89.0
GNorm 61	$79.5_{\pm 0.4}$	$38.0_{\pm 1.3}$	$46.6_{\pm 0.4}$	$74.2_{\pm 0.5}$	$85.2_{\pm 0.2}$	64.7	GNorm 61	$84.2_{\pm 0.7}$	$98.8_{\pm 0.4}$	$97.1_{\pm 0.1}$	$84.2_{\pm 0.6}$	$54.7_{\pm 0.6}$	83.8
ReAct 58	$72.9_{\pm 3.6}$	$45.6_{\pm 5.3}$	$41.3_{\pm 3.1}$	$80.1_{\pm 0.6}$	$83.6_{\pm 0.7}$	64.7	ReAct 58	$86.9_{\pm 7.0}$	$96.3_{\pm 2.4}$	$95.5_{\pm 3.2}$	$83.9_{\pm 0.8}$	$57.5_{\pm 1.6}$	84.0
VIM 59	$79.6_{\pm 2.5}$	$50.4_{\pm 3.1}$	$60.7_{\pm 1.7}$	$78.6_{\pm 0.6}$	$77.4_{\pm 0.9}$	69.3	VIM <mark>[59]</mark>	$61.4_{\pm 3.5}$	$96.2_{\pm0.4}$	$69.0_{\pm 1.5}$	$86.6_{\pm 0.7}$	$79.5_{\pm 0.5}$	78.5
ASH 60	$78.5_{\pm 3.2}$	$47.3_{\pm 2.8}$	$39.6_{\pm 1.7}$	$78.0_{\pm 0.2}$	86.6 $_{\pm 0.7}$	66.0	ASH 60	$85.2_{\pm 7.0}$	$96.9_{\pm1.4}$	$96.1_{\pm 1.5}$	$87.9_{\pm0.4}$	$52.9_{\pm 3.1}$	83.8
MDS 11	$90.2_{\pm 0.1}$	$57.8_{\pm 0.5}$	$91.8_{\pm 0.1}$	$62.9_{\pm 0.8}$	$58.4_{\pm 0.1}$	72.2	MDS 11	$49.2_{\pm 0.2}$	$96.0_{\pm 0.5}$	$39.0_{\pm 0.3}$	$93.0_{\pm 0.3}$	$90.5_{\pm0.1}$	73.5
RMDS 46	$59.4_{\pm 0.1}$	$33.6_{\pm 1.4}$	$47.4_{\pm 0.2}$	$81.9_{\pm 0.4}$	$68.8_{\pm0.1}$	58.2	RMDS 46	$91.7_{\pm 0.2}$	$99.6_{\pm0.1}$	$95.3_{\pm0.1}$	$83.4_{\pm 0.9}$	$88.1_{\pm 0.1}$	91.6
KNN <mark>[47]</mark>	$98.6_{\pm 0.0}$	$54.5_{\pm 0.5}$	$91.1_{\pm 0.1}$	$79.7_{\pm 0.6}$	$77.4_{\pm 0.0}$	80.3	KNN 47	$4.8_{\pm 0.1}$	$94.4_{\pm 1.0}$	$42.5_{\pm 0.2}$	$79.9_{\pm 1.1}$	$70.4_{\pm 0.2}$	58.4
SHE 48	$88.3_{\pm 0.2}$	$42.7_{\pm 0.6}$	$73.2_{\pm 0.1}$	$54.8_{\pm 0.7}$	$83.0_{\pm 0.1}$	68.4	SHE 48	$33.2_{\pm 0.5}$	$96.4_{\pm 0.5}$	$76.5_{\pm 0.2}$	$93.9_{\pm 0.3}$	$52.6_{\pm 0.8}$	70.5
NECO 51	$53.5_{\pm 1.6}$	$39.5_{\pm 3.2}$	$35.1_{\pm 1.5}$	$80.2_{\pm 0.1}$	$67.2_{\pm 0.3}$	55.1	NECO 51	$90.5_{\pm 2.2}$	$98.8_{\pm 0.6}$	$96.7_{\pm 1.9}$	$78.2_{\pm 0.0}$	$89.9_{\pm 0.8}$	90.8
NNGuide 49	$70.6_{\pm 2.9}$	$49.8_{\pm 4.2}$	$43.6_{\pm 2.1}$	$79.4_{\pm 0.0}$	$85.1_{\pm 0.8}$	65.7	NNGuide 49	$77.7_{\pm 6.0}$	$97.6_{\pm 1.2}$	$91.6_{\pm 3.6}$	$86.3_{\pm 0.1}$	52.2 $_{\pm 1.4}$	81.1
Relation 50	$80.7_{\pm 0.2}$	$60.4_{\pm 2.5}$	$96.0_{\pm 0.5}$	$74.5_{\pm 0.3}$	$81.8_{\pm 0.7}$	78.7	Relation 50	$73.8_{\pm 0.5}$	$95.4_{\pm 0.2}$	$24.2_{\pm 1.7}$	$84.6_{\pm 0.2}$	$78.0_{\pm 1.1}$	71.2
SCALE 52	$89.0_{\pm 2.9}$	$44.9_{\pm 3.2}$	$54.4_{\pm 2.1}$	$78.4_{\pm 0.4}$	$86.2_{\pm 0.5}$	70.6	SCALE 52	$61.0_{\pm 22.5}$	$98.7_{\pm 0.6}$	$94.6_{\pm 3.1}$	$87.7_{\pm 0.3}$	$53.0_{\pm 1.5}$	79.0
fDBD[53]	$71.1_{\pm 0.5}$	$51.3_{\pm 1.3}$	$47.4_{\pm 0.2}$	$79.9_{\pm 0.0}$	$84.2_{\pm 0.3}$	66.8	fDBD[53]	$85.5_{\pm0.8}$	$98.6_{\pm 0.5}$	$96.1_{\pm 0.4}$	$85.4_{\pm 0.2}$	$70.8_{\pm 1.0}$	87.3
NCI 54	$84.0_{\pm 0.1}$	$46.4_{\pm2.4}$	$54.8_{\pm 0.8}$	$78.5_{\pm 0.1}$	$84.9_{\pm 0.2}$	69.7	NCI 54	$41.1_{\pm 0.1}$	$99.4_{\pm 0.3}$	$92.2_{\pm0.6}$	$85.8_{\pm0.3}$	$63.8_{\pm 0.9}$	76.5
SPROD	98.8 _{±0.0}	61.6 _{±0.9}	97.4 _{±0.0}	82.4 $_{\pm 0.5}$	$85.3_{\pm 0.0}$	85.1	SPROD	4.7 $_{\pm 0.1}$	93.7 $_{\pm 0.9}$	19.0 $_{\pm0.4}$	69.5 $_{\pm 1.2}$	$58.0_{\pm0.1}$	49.0


Results: Fine-Tuning and SP Correlation Rate

- **Fine-tuning** the backbone **reduces OOD performance**, especially for feature-based methods.
- **Higher spurious correlation (90% vs. 50%)** further degrades performance, mainly for output-based methods.
- Smaller backbone (ResNet-18) performs comparably to ResNet-50.

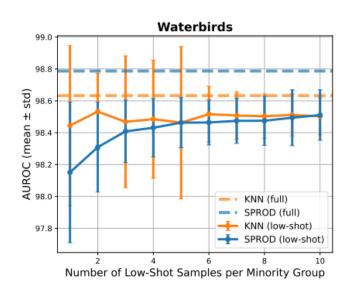


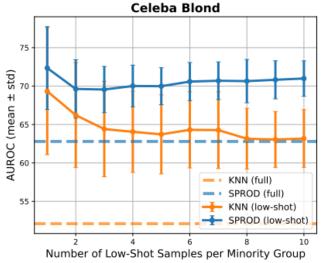


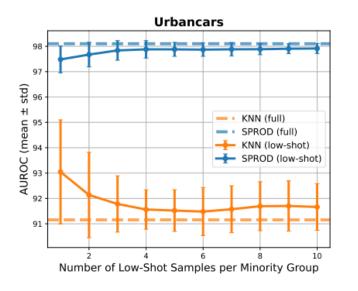

7

Results: Generative & Discriminative (Ablation)

- **Distance-based** vs. **softmax-based** scoring, using identical SPROD features and prototypes.
- Generative scores yield clearer ID/OOD separation.
- **Generative** scoring **outperforms** on most SP-OOD datasets. Biggest gap on Waterbirds, CelebA, and UrbanCars.







Results: Low-Shot and Zero-Shot SP-OOD

- Zero-Shot Comparison (CLIP-based):
 - MCM: 98.36 CMA: 98.62 SPROD: 99.01 (vision-only)
- Text-free SPROD outperforms CLIP-based zero-shot methods.
- Low-Shot Comparison:
 - SPROD maintains high AUROC even with limited samples, unlike KNN.

