

Recognition through Reasoning: Reinforcing Image Geo-localization with Large Vision-Language Models

Ling Li, Yao Zhou, Yuxuan Liang, Fugee Tsung, Jiaheng Wei*

NeurIPS 2025

What is Image Geo-localization

Q: Where was this photo taken?

1 Classification

Classification-based methods treat geo-localization as a discrete prediction task, assigning each image to a predefined set of geographical regions or cells.

2 Retrieval

Retrieval-based methods estimate location by comparing the query image to a large geo-tagged reference database, retrieving the closest match in terms of visual features, geographic coordinates, or semantic labels (e.g., city or country names).

3 Generation

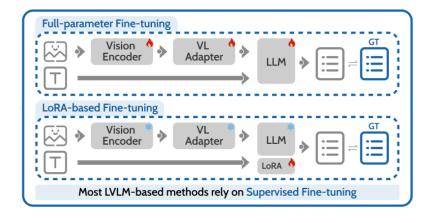
The emergence of Large Vision-Language Models (LVLMs) has introduced a new paradigm to tackle image geo-localization. These methods are capable of generating both location predictions and explanations, offering greater interpretability in how decisions are made.

Limitations in LVLM-based Image Geo-localization

① Data

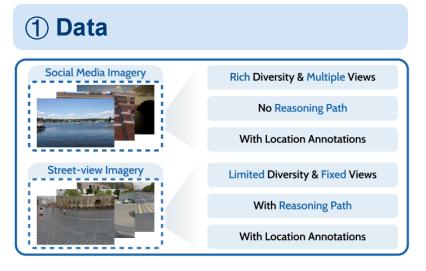
- Lack of Reasoning Supervision
 - Existing geo-localization datasets rarely include explicit reasoning e.g., interpretations of visual cues or justifications for location decisions.
- Over-Reliance on Street-View Imagery
 - Recent efforts focus on street-view data → limited diversity & fixed views.
- Poor Generalization to Real-World Scenes
 - Models trained this way struggle with real-world visual conditions.

2 Modeling



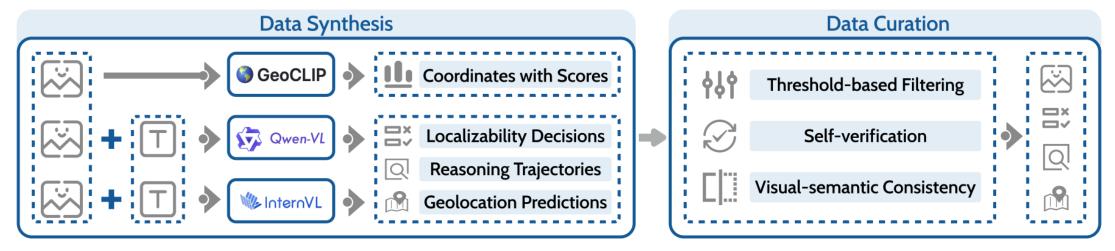
 All current SFT approaches (full-parameter / LoRA) use instruction-style data → encourage pattern replication

How GLOBE Tackles the Challenges

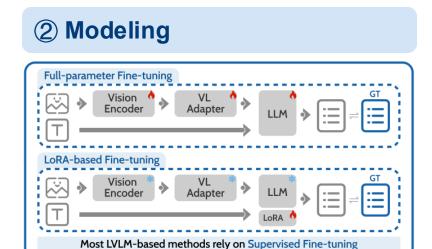


- How much data is enough
- How to construct trustworthy reasoning trajectories

➤ Multiple Vision-Language Models Knowledge Distillation + Multi-dimensional Verification



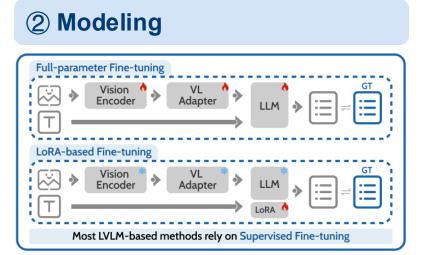
How GLOBE Tackles the Challenges



How to enable efficient fine-tuning via curated reasoning data

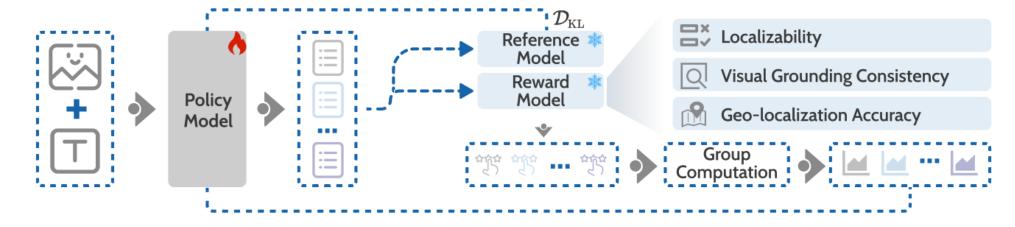
- > We develop three task-specific rewards to assess distinct dimensions of reasoning quality
 - > Localizability Reward
 - Visual Grounding Consistency Reward
 - > Geo-localization Accuracy Reward

How GLOBE Tackles the Challenges



How to enable efficient fine-tuning via curated reasoning data

➤ Using reward signals, we fine-tune the base model with GRPO (Group Relative Policy Optimization)



Experimental Setup

Datasets

- For Data Curation
 - GeoCLIP
 - Qwen2.5-VL-72B
 - ➤ InternVL3-78B

Table 1: Statistics of the proposed *MP16-Reason*.

Dataset	#Samples	#Country	#City	#Indoor Scene	#Natural Scene	#Urban Scene
MP16-Reason-Train	33721	134	1944	5393	2077	26251
MP16-Reason-Test	12000	145	3012	2096	1092	8812

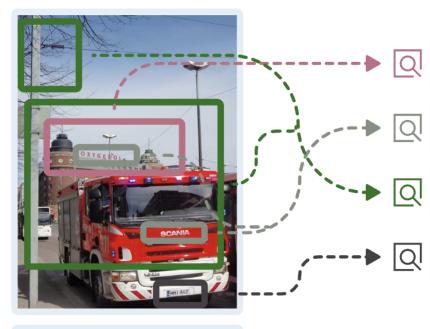
[#] denotes the number of instances.

Evaluation Metrics

We follow previous work and report the percentage of predictions whose geographic distance to the ground-truth coordinate falls within fixed thresholds (1km, 25km, 200km, 750km, and 2500km). Since our model outputs discrete place names (e.g., country or city), we concatenate the predicted city and country into a single string and query Microsoft Azure Maps, which returns the corresponding representative GPS coordinate (e.g., the geographic center of the region) for evaluation.

Helsinki, Finland

Qualitative Result



<think>

Architecture: The buildings have a European architectural style with red brickwork, domed towers, and ornate details like clock towers and green domes with red domes on top. The "OXYGEROL" sign suggests a hotel or building with industrial-style lettering.

Signage and Street Names: The street signs and the building with the "OXYGEROL" sign suggest a Swedish city due to the Scandinavian style of architecture and the Scanian brand of vehicles used by the fire truck. The red fire truck with "Scania" logo indicates it's a Scania truck commonly used in Sweden.

Street Layout and Vegetation: The urban setting with European-style buildings, bare trees suggesting winter or early spring, modern streetlights, and urban infrastructure like buses and buildings with large windows and cylindrical domes is typical of **Helsinki, Finland**.

Street Signs and License Plate: The license plate "MMI-842" resembles **Finnish** license plates. The "Scania" branding on the fire truck is prominent, which is common in **Finland**.

</think>

<answer> country: Finland, city: Helsinki </answer>

Baseline Comparison

Table 2: Geo-localization performance comparison on *MP16-Reason*-Test and IM2GPS3K [82].

		MP16-Reason-Test (% @ km) IM2GPS3K [82] (% @ km)									
Method	Dataset, Size	Street	City	Region	Country	Continent	Street	City	Region	Country	Continent
		1km	25km	200km	750km	2500km	1km	25km	200km	750km	2500km
I. Image-only supervision	1										
ISNs 9	MP-16, 4M	26.24	<u>47.38</u>	55.88	68.48	80.92	10.50	28.00	36.60	49.70	66.00
GeoCLIP [15]	MP-16, 4M	<u>29.28</u>	<u>52.52</u>	66.85	84.07	93.33	14.11	34.47	50.65	69.67	83.82
Translocator [†] [10]	MP-16, 4M	-	-	-	-	-	11.80	31.10	46.70	58.90	80.10
PIGEOTTO [†] [16]	MP-16, 4M	-	-	-	-	-	11.30	36.70	53.80	72.40	85.30
G3 (GPT4V) [†] [19]	MP-16, 4M	-	-	-	-	-	16.65	40.94	55.56	71.24	84.68
Hybrid 83	OSV-5M, 5M	0.97	16.53	28.72	50.31	71.47	0.83	13.28	25.33	43.84	65.63
RFM-YFCC 49	Flickr, 48M	11.72	46.64	60.46	77.97	91.96	5.41	29.70	44.71	61.83	79.55
II. Open- and closed-source LVLMs											
Qwen2.5-VL-7B 24	-	15.42	52.72	62.86	75.11	83.47	8.58	32.53	43.11	58.93	72.37
InternVL3-8B 33	-	12.01	44.17	55.66	75.36	86.98	6.44	25.69	34.57	49.38	61.66
Gemma3-27B 84	-	16.03	55.63	68.07	82.59	91.29	8.48	33.37	46.61	63.63	79.95
InternVL3-78B 33	-	14.72	52.46	65.25	81.73	91.17	8.93	35.05	47.32	64.03	78.64
Qwen2.5-VL-72B 24	-	17.52	59.30	71.01	84.06	91.65	9.11	35.77	48.35	64.96	78.88
Doubao1.5-VL [†] [85]	-	18.89	64.02	76.55	88.33	93.44	11.61	46.21	60.60	75.04	85.09
GPT-4.1 [†] [86]	-	20.05	66.76	79.70	89.84	94.53	12.11	46.85	60.36	74.41	85.25
III. Task-specific reasonii	III. Task-specific reasoning supervision										
GeoReasoner-7B [28]	GSV, 133K	10.06	40.44	50.91	68.01	79.68	7.67	26.94	36.63	52.27	65.39
GaGA [†] [30]	MG-Geo, 5M	-	-	-	-	-	11.70	33.00	48.00	67.10	82.10
GLOBE-7B (Ours)	MP16-Reason, 33K	17.99	62.85	73.83	86.68	92.52	9.84	40.18	56.19	71.45	82.38

[†] denotes models that are not publicly available. <u>Underlined</u> results indicate test-train overlap. Best open- and closed-source results are in <u>blue</u> and <u>bold</u>, respectively.

Fine-tuned on only 33K reasoning-augmented data, our model outperforms mainstream open-source models trained on millions.

Ablation Study - Reward components

Table 3: Ablation on reward components with Qwen2.5-VL-7B [24] backbone.

Model	СоТ	SFT	Loc	GRPO VGC	GA	Street	City	Region	st (% @ km) Country	Continent
			Reward	Reward	Reward	1km	25km	200km	750km	2500km
Qwen2.5-VL-7B [24]						14.37	51.11	61.29	73.67	82.46
Qwen2.5-VL-7B [24]	✓					15.42	52.72	62.86	75.11	83.47
Qwen2.5-VL-7B [24]	✓	\checkmark				16.38	56.76	70.21	83.82	90.75
GLOBE w/o Loc&GA	 			✓		17.01	59.36	71.77	84.44	91.76
GLOBE w/o Loc&VGC	✓				\checkmark	17.24	59.24	71.93	84.69	91.54
GLOBE w/o Loc	│ 			√	√	17.50	59.58	71.23	84.06	91.23
GLOBE w/o VGC	✓		✓		\checkmark	17.52	59.83	72.22	84.72	91.12
GLOBE w/o GA	✓		✓	\checkmark		17.44	59.53	71.41	84.33	91.18
GLOBE			✓	✓	✓	17.99	62.85	73.83	86.68	92.52

Even with partial reward combinations, GRPO still surpasses SFT, demonstrating the clear advantage of reinforcement learning with reasoning-driven supervision.

Ablation Study - Backbone models

Table 4: Ablation on backbone architectures.

			MP16-Reason-Test (% @ km)						
Backbone	Training Strategy	Street 1km	City 25km	Region 200km	Country 750km	Continent 2500km			
InternVL3-8B 33	Baseline	12.01	44.17	55.66	75.36	86.98			
	SFT	12.41	44.68	56.37	75.20	86.32			
	GRPO	17.47	60.09	72.41	85.02	91.92			
Qwen2.5-VL-7B 24	Baseline	15.42	52.72	62.86	75.11	83.47			
	SFT	16.38	56.76	70.21	83.82	90.75			
	GRPO	17.99	62.85	73.83	86.68	92.52			

Ablation Study - Distillation datasets

Table 5: Ablation on data curation with Qwen2.5-VL-7B [24] backbone.

Curation Setting	Training Strategy	Street 1km	MP16 City 25km	<i>Reason</i> -Te Region 200km	st (% @ km Country 750km	Continent 2500km
Baseline	-	15.42	52.72	62.86	75.11	83.47
Random sampling	SFT	15.23	52.00	64.56	78.17	85.23
	GRPO	17.26	59.22	71.80	84.73	91.26
Single-source validation	SFT	15.22	52.47	65.09	78.79	86.15
	GRPO	17.37	59.45	71.88	84.74	91.24
Full multi-source validation	SFT	16.38	56.76	70.21	83.82	90.75
	GRPO	17.99	62.85	73.83	86.68	92.52

THANKS!

Recognition through Reasoning: Reinforcing Image Geo-localization with Large Vision-Language Models

Code & Datasets

Personal Website

