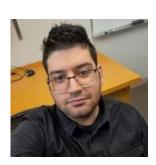


Computational Hardness of Reinforcement Learning with Partial q^{π} -realizability

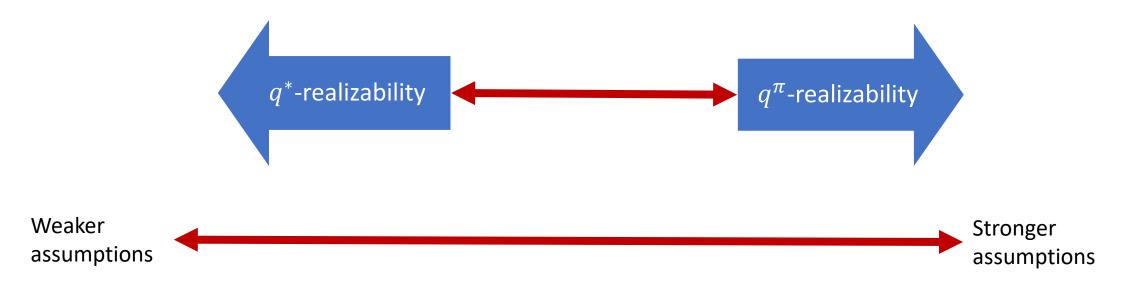


Xiaoqi Tan

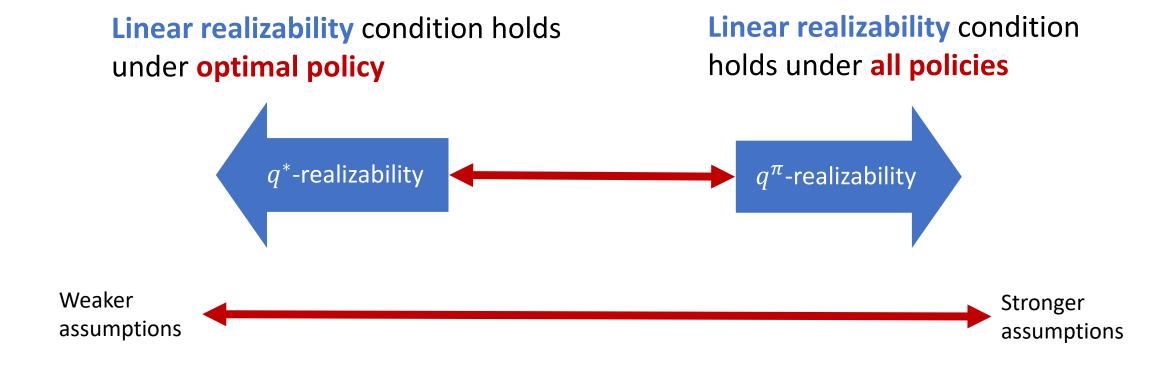
Overview of Research Questions and Main Results

Problems of interest: Reinforcement learning + Linear function approximation

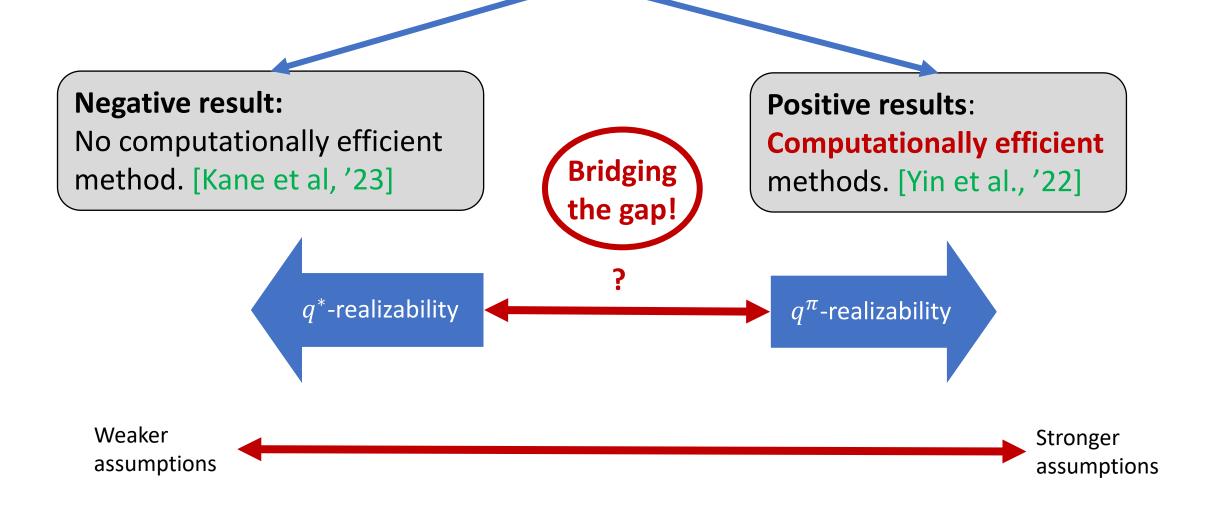
Two common problem settings: q^* , q^{π} -realizability settings

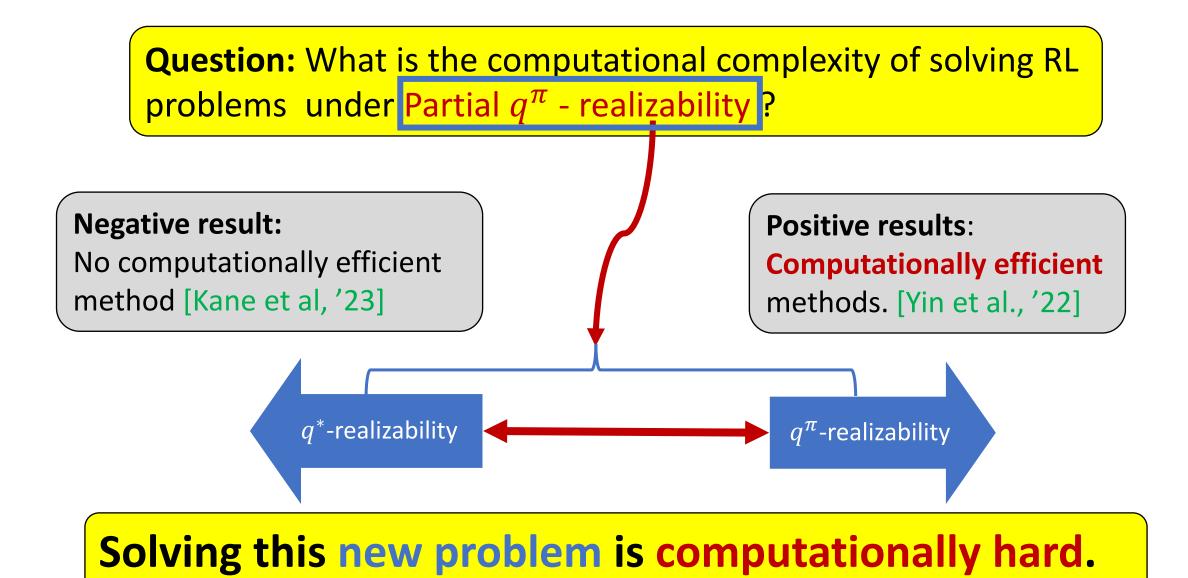


Overview of Research Questions and Main Results



Computational complexity perspective



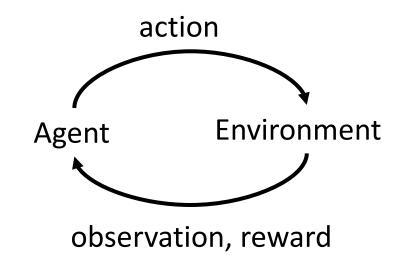


- Introduction
- Problem Setting
- Main Results
- Proof Sketch
- Conclusions & Future Directions

- Introduction
- Problem Setting
- Main Results
- Proof Sketch
- Conclusions & Future Directions

Reinforcement Learning: MDP

- In RL, agent interacts with environment in sequential manner. (here, Interactions happen in episodic way)
- Environment: A Markov Decision Process is defined as a tuple (S, A, P, R, H), where :
 - S: state space
 - A: action space
 - $P: S \times A \rightarrow \Delta(S)$ transition dynamics
 - $R: S \times A \rightarrow \Delta([0,1])$ reward function
 - *H*: horizon (length of episode)
- Agent: using policy π to interact with MDP
 - $\pi: S \to \Delta(A)$ (stochastic policy), and in case of deterministic policies $\pi: S \to A$.



Reinforcement Learning: Objective

- Value functions: Expected sum of rewards.
 - $v^{\pi}(s) \coloneqq \mathbb{E}_{\pi,s} \left[\sum_{h=1}^{H} R_t \mid s_1 = s \right],$
 - $q^{\pi}(s, a) := \mathbb{E}_{\pi, s, a} \left[\sum_{h=1}^{H} R_t \mid s_1 = s, a_1 = a \right],$
- Objective of the learner: finding a policy π that maximizes the expected cumulative reward starting from initial state s_1 :

$$\pi^* = \operatorname{argmax}_{\pi} v^{\pi}(\mathbf{s_1})$$

- How does the agent interact with the MDP?
 - Generative model: learner can query a simulator with any $(s, a) \in (S \times A)$ to obtain a sample (s', R), where $s' \sim P(s, a)$ and $R \sim R(s, a)$.

Linear Function Approximation in RL

• Linear Function Approximation (LFA): Representing the value functions with linear combination of feature vector and weight vector.

Definition (q^{π} -realizable MDP): MDP M is called q^{π} -realizable, if there exists $\theta_h \in \mathbb{R}^d$ for any $h \in [H]$, such that $\forall \pi$

$$q_h^{\pi}(s,a) = \langle \phi(s,a), \theta_h \rangle, \quad \forall s \in S \text{ and } \forall a \in A$$

Definition (q^* -realizable MDP): MDP M is called q^* -realizable, if there exists $\theta_h \in \mathbb{R}^d$ for any $h \in [H]$, such that for optimal policy π^* :

$$q_h^*(s,a) = \langle \phi(s,a), \theta_h \rangle, \quad \forall s \in S \text{ and } \forall a \in A$$

- Introduction
- Problem Setting
- Main Results
- Proof Sketch
- Conclusions & Future Directions

Definition of Partial q^{π} -realizability

• Partial q^{π} -realizability: Given a policy set Π and a feature vector $\phi: S \times A \to \mathbb{R}^d$, an MDP is said to be partially q^{π} -realizable under Π if, for all $\pi \in \Pi$, there exists $\theta_h \in \mathbb{R}^d$ such that:

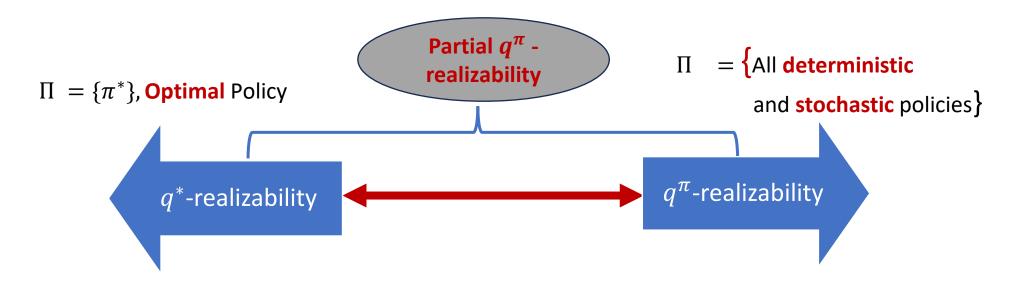
$$q_h^{\pi}(s_h, a_h) = \langle \phi(s_h, a_h), \theta_h \rangle$$
 for all $(s_h, a_h) \in S_h \times A$

Objective under Partial q^{π} -realizability Setting

π ∉ Π may occur.

Objective: Given an initial state $s_1 \in S$, we want to learn a policy π which is ϵ -optimal with respect to the best policy in Π with high probability:

$$V^{\pi}(s_1) \ge \max_{\overline{\pi} \in \Pi} V^{\overline{\pi}}(s_1) - \varepsilon$$



Question 1: Can we break the hardness result [Kane et al, '23] for the q^* -realizable setting when considering a policy class Π with $\{\pi^*\} \subsetneq \Pi$?

Question 2: Can we still achieve positive results [Yin et al., '22] in the q^{π} realizable setting with a restricted policy class Π ?

Need for Well-defined Policy Sets

To have a well-defined RL problem under partial q^{π} -realizability, we need to specify the policy set Π .

• Partial q^{π} -realizability: Given a policy set Π and a feature vector $\phi: S \times A \to \mathbb{R}^d$, an MDP is said to be partially q^{π} -realizable under Π if, for all $\pi \in \Pi$, there exists $\theta_h \in \mathbb{R}^d$ such that:

$$q_h^{\pi}(s_h, a_h) = \langle \phi(s_h, a_h), \theta_h \rangle$$
 for all $(s_h, a_h) \in S_h \times A$

Our Focus: Two Policy Sets

Greedy policy set (Π^g) and Softmax policy set (Π^{sm})

• Partial q^{π} -realizability: Given a policy set Π and a feature vector $\phi: S \times A \to \mathbb{R}^d$, an MDP is said to be partially q^{π} -realizable under Π if, for all $\pi \in \Pi$, there exists $\theta_h \in \mathbb{R}^d$ such that:

$$q_h^{\pi}(s_h, a_h) = \langle \phi(s_h, a_h), \theta_h \rangle$$
 for all $(s_h, a_h) \in S_h \times A$

Greedy Policy Set

```
Greedy Policy: Let \phi': S \times A \to \mathbb{R}^{d'} be a feature vector with dimension d' \in \mathbb{N}. For any h \in [H] and \theta' \in \mathbb{R}^{d'}, let \pi_{\theta'}: S_h \to A be defined as follows:
```

$$\pi_{\theta'}(s_h) \coloneqq argmax_{a \in A} \langle \phi'(s_h, a), \theta' \rangle$$
 for all $s_h \in S_h$

Greedy Policy Set:
$$\Pi^g \coloneqq \{\pi_{\theta'} | \theta' \in \mathbb{R}^{d'}\}$$

Remark: $\phi' \in \mathbb{R}^{d'}$ and $\phi \in \mathbb{R}^d$, where $\phi \neq \phi'$.

Softmax Policy Set

Softmax Policy: Let ϕ' : $S \times A \to \mathbb{R}^{d'}$ be a feature vector with dimension $d' \in \mathbb{N}$. For any $h \in [H]$ and $\theta' \in \mathbb{R}^{d'}$, let $\pi_{\theta'}$: $S_h \to \Delta(A)$ be defined as follows:

$$\pi_{\boldsymbol{\theta'}}(a|s_h) = \frac{e^{\boldsymbol{\phi'}(s_h,a)^T\boldsymbol{\theta'}}}{\sum_{i=1}^{\kappa} e^{\boldsymbol{\phi'}(s_h,a_i)^T\boldsymbol{\theta'}}} \qquad \forall s_h \in S_h$$

Softmax Policy Set: $\Pi^{sm} \coloneqq \{\pi_{\theta'} | \theta' \in \mathbb{R}^{d'}\}$

- Introduction
- Problem Setting
- Main Results
- Proof Sketch
- Conclusions & Future Directions

Theorem 1 (NP-hardness under greedy policy set; informal):

Consider a partially q^{π} -realizable instance with $\pi \in \Pi^g$. Then, for some specific constant ϵ (with ϵ sufficiently small), no polynomial-time algorithm can compute an ϵ -optimal policy, unless P=NP.

Theorem 2 (Hardness under softmax policy set; informal):

Consider a partially q^{π} -realizable instance with $\pi \in \Pi^{sm}$. Then, for some specific constant ϵ (with ϵ sufficiently small), no randomized subexponential time algorithm with low error probability can compute an ϵ -optimal policy, under rETH.

Question 1: Can we break the hardness result [Kane et al, '23] for the q^* -realizable setting when considering a policy class Π with $\{\pi^*\} \subsetneq \Pi$?

Question 2: Can we still achieve positive results [Yin et al., '22] (in terms of computational efficiency) in the q^{π} -realizable setting with a restricted policy class Π ?

- Introduction
- Problem Setting
- Main Results
- Proof Sketch
- Conclusions & Future Directions

Overview of the Proof

- Deterministic reduction: δ -MAX-3SAT \leq_p Greedy-Linear-2-RL.
- Two main steps for proving hardness result for our complexity problems:

Step 1 (Polynomial Transformation):

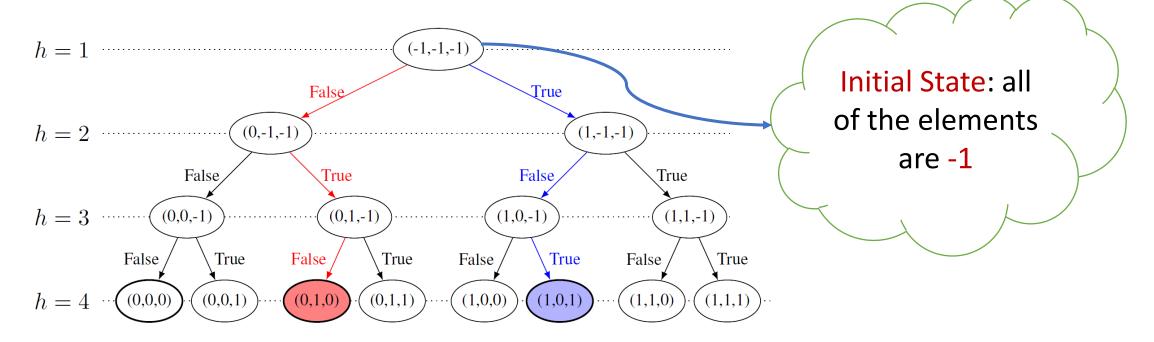
Design an MDP instance under partial q^{π} -realizability (Greedy-Linear-2-RL) from a given complexity problem (δ -MAX-3SAT) in polynomial time.

Step 2 (Algorithmic connection):

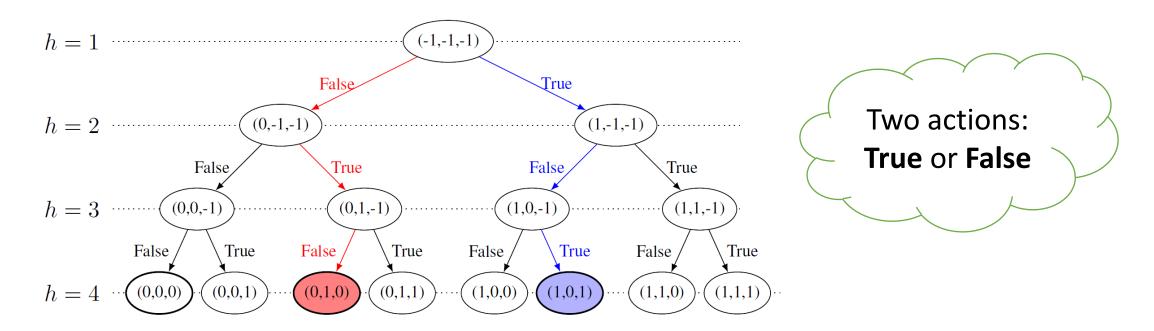
Show that the method for solving our RL problem (Greedy-Linear-2-RL) can be used for solving the NP-hard problem instance (δ -MAX-3SAT).

• Given δ -MAX-3SAT instance φ : $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)$, our MDP is as follows: (-1,-1,-1)We have 3 variables, and True False state is a tuple (0,-1,-1)(1,-1,-1)with three False False True True elements $h = 3 \cdots (0,0,-1)$ (1,1,-1)(1,0,-1)(0,1,-1)False True False False True True False True (0,0,0)(0,0,1)(0,1,0)(0,1,1)(1,0,0)(1,0,1)(1,1,0)(1,1,1)

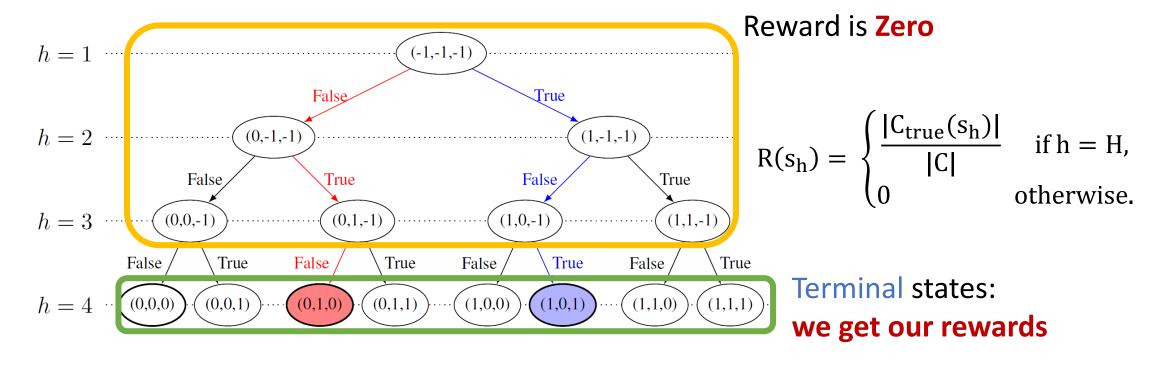
• Given δ -MAX-3SAT instance φ : $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)$, our MDP is as follows:



• Given δ -MAX-3SAT instance φ : $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)$, our MDP is as follows:



• Given δ -MAX-3SAT instance φ : $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)$, our MDP is as follows:



- Introduction
- Problem Setting
- Main Results
- Proof Sketch
- Conclusions & Future Directions

Conclusions

• Introducing partial q^{π} -realizability setting which bridges the gap between q^{π} -realizability and q^{*} -realizability assumptions.

• Obtaining hardness result for this new problem setting under different policy sets (greedy policy set Π^g and softmax policy set Π^{sm}).

• Our results show that enlarging the policy class beyond the optimal policy π^* does not eliminate the fundamental computational challenges.

Thanks so much for your attention!