Large Stepsizes Accelerate GD

for Regularized Logistic Regression

Jingfeng Wu with Pierre Marion and Peter Bartlett

Gradient descent

$$w_{+} = w - \eta \nabla L(w)$$

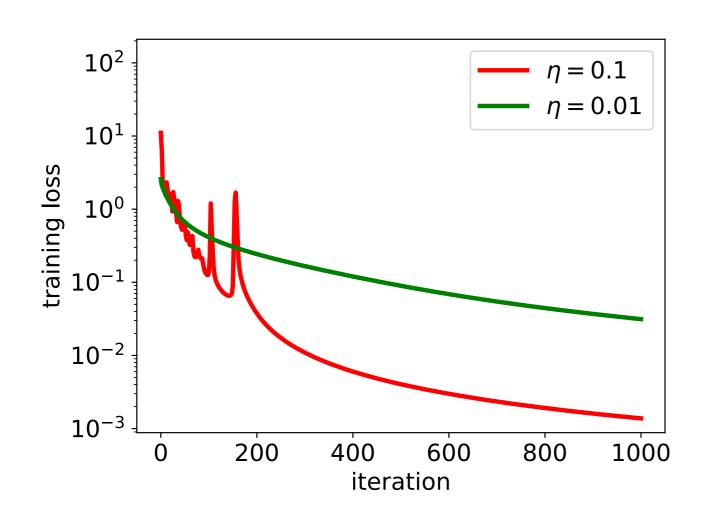
"GD ≈ discrete time gradient flow"

Cauchy, 1847

$$dw = -\nabla L(w)dt \implies dL(w) = \nabla L(w)^{\mathsf{T}}dw$$
$$= -\|\nabla L(w)\|^{2}dt$$
$$\Rightarrow L(w) \downarrow$$

small $\eta \Rightarrow$ convex optimization theory

Experiment (3-layer net, MNIST)



large stepsize is

- unstable
- but faster

this work analyzes benefits of large stepsize

Regularized logistic regression

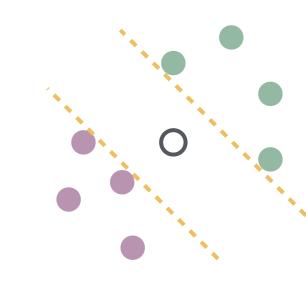
$$\tilde{L}(w) = L(w) + \frac{\lambda}{2} ||w||^2$$
 $L(w) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + \exp(-y_i x_i^{\mathsf{T}} w))$

$$w_{t+1} = w_t - \eta \, \nabla \tilde{L}(w_t)$$

Assumption (bounded + separable)

•
$$||x_i|| \le 1, y_i \in \{\pm 1\}, i = 1,...,n$$

•
$$\exists$$
 unit vector w^* , $\min_i y_i x_i^\top w^* \ge \Theta(1)$



"almost surely" separable when overparameterized

Classical theory prediction

- $\Theta(1)$ -smooth
- λ -strongly convex
- condition number $\kappa = \Theta(1/\lambda)$
- finite minimizer w_{λ} , $\|w_{\lambda}\| = O(\ln(1/\lambda))$

Classical theory

For
$$\eta = \Theta(1)$$
, $\tilde{L}(w_t) \downarrow$ and
$$\tilde{L}(w_t) - \min \tilde{L} \leq \epsilon \text{ for } t = \tilde{O}(1/\lambda)$$

improved to $\tilde{O}(1/\lambda^{1/2})$ by Nesterov

Theorem (small λ)

 $\boxed{\eta_{\text{max}} = \Theta(1/\lambda^{1/2})}$

Assume separability and

$$\lambda \le \Theta\left(\frac{1}{n \ln n}\right) \quad \eta \le \Theta\left(\min\left\{\frac{1}{\lambda^{1/2}}, \frac{1}{n\lambda}\right\}\right)$$

Phase transition. GD exists unstable phase in τ steps for

$$\tau := \max\{\eta, n, n/\eta \ln(n/\eta)\} \left\{ \tau = \Theta(1/\lambda^{1/2}) \right\}$$

Stable phase. From au and onward

$$\tilde{L}(w_{\tau+t}) - \min \tilde{L} \lesssim \exp(-\lambda \eta t)$$

$$t = \Theta(\ln(1/\epsilon)/\lambda^{1/2})$$

for small λ , large stepsize GD matches Nesterov

Theorem (general λ)

Assume separability and

$$\left(\eta_{\text{max}} = \Theta(1/\lambda^{1/3})\right)$$

$$\lambda \leq \Theta(1), \quad \eta \leq \Theta(1/\lambda^{1/3})$$

Phase transition. GD exists unstable phase in τ steps for

$$\tau := \Theta(\eta^2) \qquad \left\{ \tau = \Theta(1/\lambda^{2/3}) \right\}$$

Stable phase. From au and onward

$$\tilde{L}(w_{\tau+t}) - \min \tilde{L} \lesssim \exp(-\lambda \eta t)$$

$$t = \Theta(\ln(1/\epsilon)/\lambda^{2/3})$$

for general λ , large stepsize is faster than small stepsize $\tilde{O}(1/\lambda^{2/3})$ $\tilde{O}(1/\lambda)$

Margin-based generalization

Assume $(x_i, y_i)_{i=1}^n$ are iid copies of (x, y), where a.s.

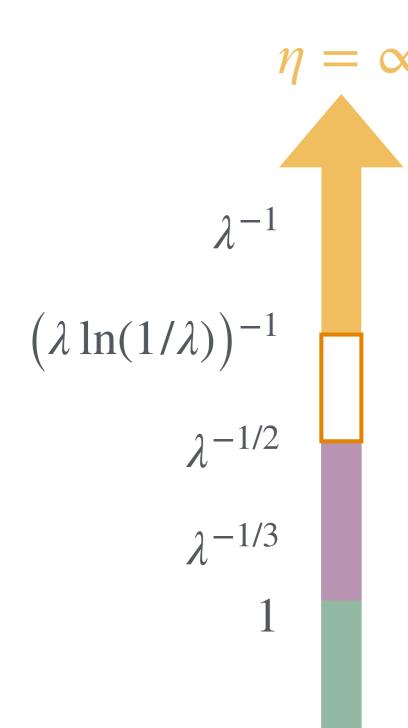
- $||x|| \le 1, y \in \{\pm 1\}$
- \exists unit vector w^* , $yx^\top w^* \ge \Theta(1)$

Corollary. The best known test error upper bound is $\tilde{O}(1/n)$. To get $\tilde{O}(1/n)$ rate, GD takes

- O(n) steps with $\lambda = 0$ and $\eta = \Theta(1)$
- O(n) steps with $\lambda = 1/n$ and $\eta = 1$
- $\tilde{O}(n^{2/3})$ steps with $\lambda = 1/n$ and $\eta = \Theta(n^{1/3})$

large stepsize accelerates GD without overfitting

Stepsize diagram



divergent

locally convergent

unstable convergent

stable convergent

generic support vectors unknown global behavior

match Nesterov

sample size independent

 $\eta = o(1)$, gradient flow