

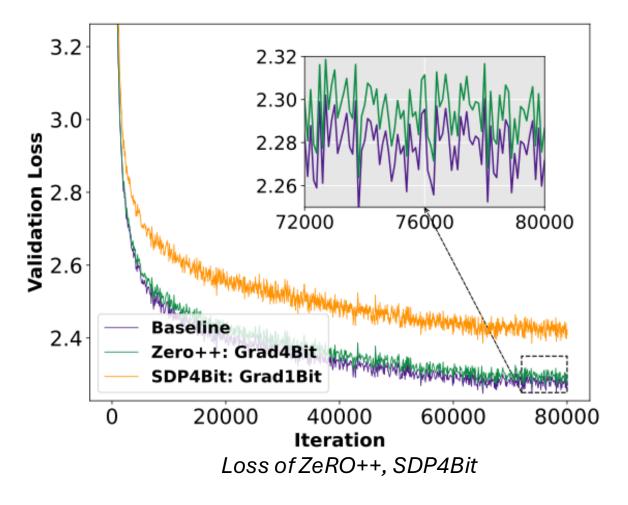
DUO: No Compromise to Accuracy Degradation

Jinda Jia*, Cong Xie*, Fanjiang Ye, Hao Feng, Hanlin Lu, Daoce Wang, Haibin Lin, Zhi Zhang, Xin Liu

Motivation:

Gradient Quantization Results in Accuracy

Degradation


ZeRO++ with 4bit Gradient Quantization:

Intra/Inter Grad: 32 bits → 4 bits

SDP4Bit with 1bit Gradient Quantization:

Intra Node Grad: 32 bits \rightarrow 8 bits

Inter Node Grad: 32 bits \rightarrow 1 bits

Fast-Slow (algorithm) + DUO = Comp-Comm Overlapping + Gradient Offload

Design 1 Algorithm: Fast-Slow Reduction

"Slow" Gradient Reduction:

- 1) High Precision FP32
- 2) Async with forward-backward
- 3) On the CPU

"Fast" Gradient Reduction:

- 1) Low Precision INT1/INT4/INT8...
- 2) Sync before Optimizer Step
- On the GPU

Algorithm 1 Distributed training with DUO

Require: parameter weight (main copy): w, weight for forward-backward: \tilde{w} , weight for communication: w', weight difference: d, gradient: g, worker: p, pth shard of weight or gradient: [p], gradient produced by worker p: g^p , gradients with compression \tilde{g} , averaged gradient: \bar{g} , current iteration: t

```
1: function ForwardPass
```

```
2: d_t[p] = w'_t[p] - \tilde{w}_{t-1}[p]
```

3: $d_t[p] \leftarrow \text{QuantizeWeightsDiff}(d_t[p])$

```
d \in \tilde{d}_t \leftarrow \text{AllGather}(\tilde{d}_t[p])
```

5: Start AsyncReduceScatter(g_{t-1}^p)

```
6: \tilde{w}_t \leftarrow \tilde{w}_{t-1} + \tilde{d}_t
```

7: $output^p \leftarrow ForwardPass(\tilde{w}_t, input^p)$

3: function BackwardPass

9: $g_t^p \leftarrow \text{Gradient}(\tilde{w}_t, output_t^p)$

10: SaveReplica (q_t^p)

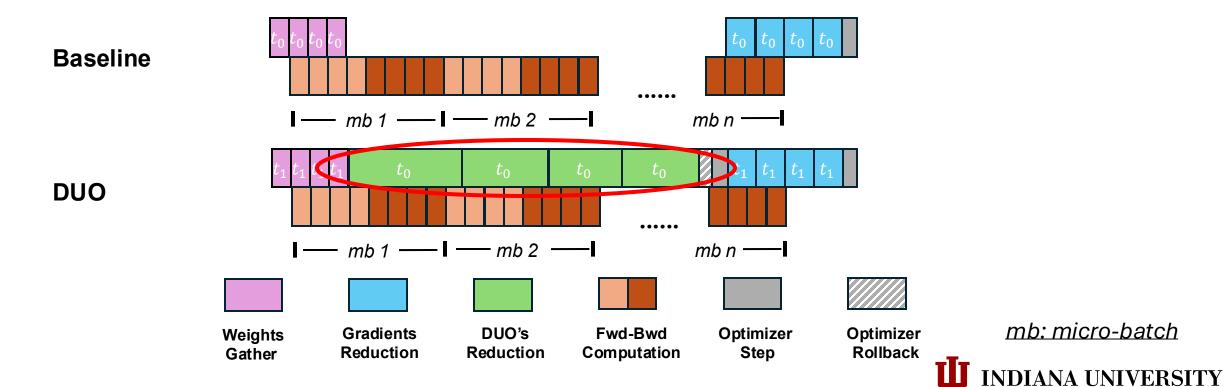
1: $\tilde{g}_t^p \leftarrow \text{CompressGradient}(g_t^p)$

2: $\bar{\tilde{g}}_t[p] \leftarrow \text{ReduceScatter}(\tilde{g}_t^p)$

13: $\bar{g}_{t-1}[p] \leftarrow \text{Wait AsyncReduceScatter Finish}$

14: Recover $w_{t-1}[p]$

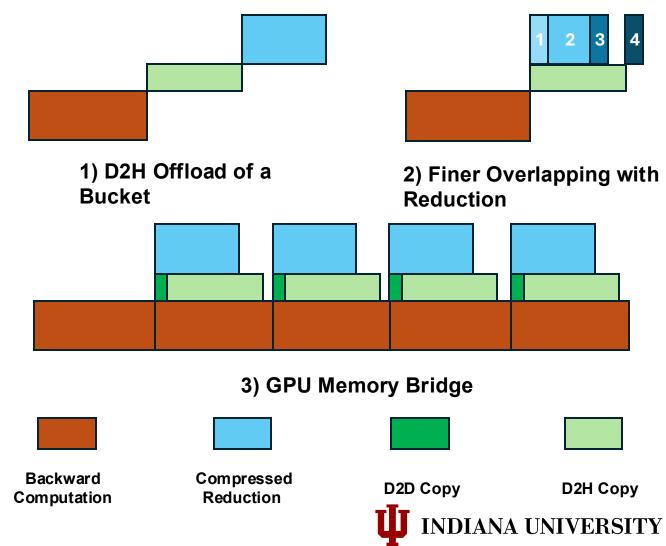
15: $w_t[p] \leftarrow \text{Optimizer}(\bar{g}_{t-1}[p], w_{t-1}[p])$


16: $w'_{t+1}[p] \leftarrow \text{Optimizer}(\bar{\tilde{g}}_t[p], w_t[p])$

Design 2 System: Overlapping Communication with Computation

Existing LLM training overlaps only with the first and last micro-batch.

Ours overlaps "slow" reduction with other idle phases.



Design 3 System: Gradient Offload Optimization

DUO requires copying gradients to CPU before starting the "fast" reduction (D2H copy bottleneck).

- 1) Bucket-wise offloading
- 2) Fine-grained D2H overlap
- 3) GPU memory bridge

Experiments

> End-to-end Training Loss with DUO

Grad Bits	Strategy	125M	350M	1.3B	6.7B
32	Full Precision	2.2716	2.0582	1.8854	1.7527
4	SDP4Bit DUO	2.2757 2.2727	2.0629 2.0592	1.8944 1.8907	1.7570 1.7535
1	SDP4Bit DUO	2.4204 2.2712	2.1843 2.0686	2.0489 1.8943	1.8434 1.7572
0	DUO	2.2761	2.0628	1.8941	1.7550

Final loss is close to the baseline. Even fully remove "fast" reduction (0-bit)

Experiments

> E2E Training Throughput with Different Models

Model	Method	H20 (8×8 H20 Nodes)		A100 (8×4 A100 Nodes)	
		Throughput (TFLOPS)	Mem (MB)	Throughput (TFLOPS)	Mem (MB)
1.3B	DUO SDP4Bit	$70.82 \pm 0.63 71.02 \pm 0.63$	15880 15832	$ \begin{array}{c c} 117.53 \pm 0.49 \\ 117.61 \pm 2.35 \end{array} $	21270 20934
2.7B	DUO SDP4Bit	$78.71 \pm 0.92 79.15 \pm 0.80$	25600 25640	$ \begin{array}{c} 125.31 \pm 0.37 \\ 126.42 \pm 0.82 \end{array} $	35298 34422
6.7B	DUO SDP4Bit	$ 84.09 \pm 2.04 \\ 85.61 \pm 1.57 $	16162 15692	$\begin{array}{ c c c c c }\hline 122.67 \pm 3.76 \\ 121.05 \pm 1.89\end{array}$	26480 25684
13B	DUO SDP4Bit	$\begin{array}{c} 93.02 \pm 1.08 \\ 94.68 \pm 0.77 \end{array}$	27596 27220	$\begin{array}{c} 132.88 \pm 0.95 \\ 136.73 \pm 1.35 \end{array}$	27332 27142
18B	DUO SDP4Bit	$ \begin{array}{c} 100.85 \pm 1.29 \\ 102.93 \pm 1.04 \end{array} $	36540 35478	$\begin{array}{c} 116.37 \pm 1.28 \\ 122.91 \pm 1.16 \end{array}$	27378 27088

DUO achieves similar throughput to SDP4Bit, showing that our high-precision communication adds minimal overhead.

Looking forward to see you on Dec 3

DUO: No Compromise to Accuracy Degradation

Exhibit Hall C,D,E
Wed 3 Dec 4:30 p.m. PST — 7:30 p.m. PST

