

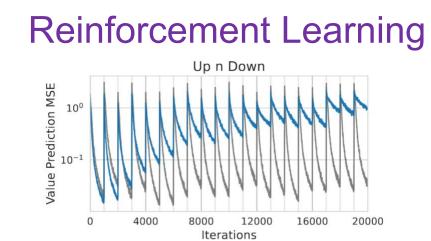
The Dual Nature of Plasticity Loss in Deep Continual Learning: Dissection and Mitigation

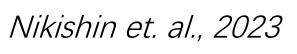
Haoyu Albert Wang^{1,2,†}, Wei P. Dai^{1,4,†,‡}, Jiawei Zhang^{1,3}, Jialun Ma¹, Mingyi Huang^{1,2}, Yuguo Yu^{1,2,3,4,‡}

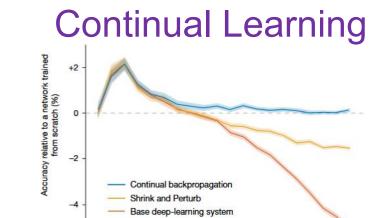
1.Research Institut^{1,2,3,4}e of Intelligent Complex Systems, Fudan University.2. Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University.3. State Key Laboratory of Brain Function and Disorders and MOE Frontiers Center for BrainScience, Institutes of Brain Science, Fudan University. 4. Shanghai Artificial Intelligence Laboratory. † These authors contributed equally to this work.‡ Corresponding author.

Introduction

Loss of Plasticity in Deep Continual Learning



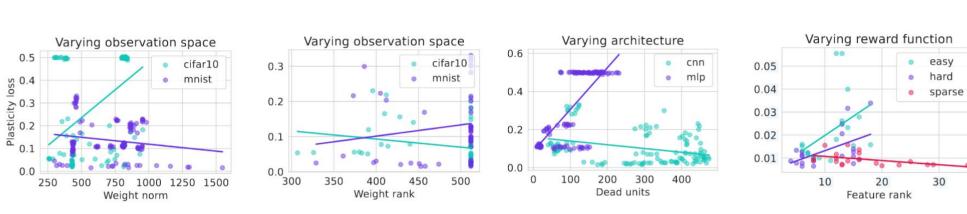




Dohare et. al., 2024

Loss of plasticity is a widely observed phenomenon in both continual learning and RL. It refers to the degradation of performance on new tasks, which eventually prevents the system from learning continuously.

Potential factors of LoP are Inconclusive and Indirect

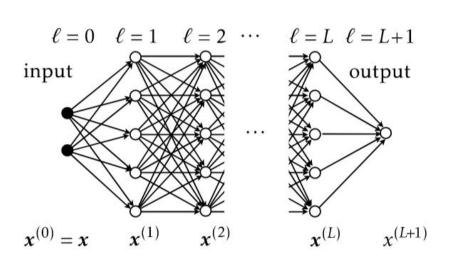


Lyle et. al., 2023

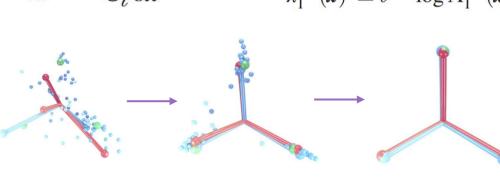
A more comprehensive understanding of LoP is in need.

- Preliminary

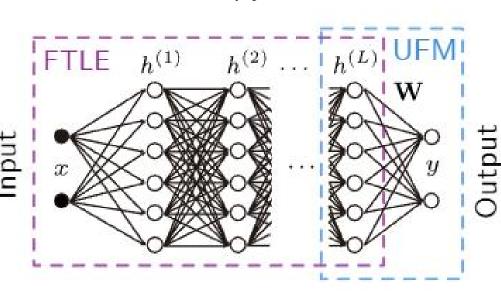
A Framework Combining FTLE and UFM

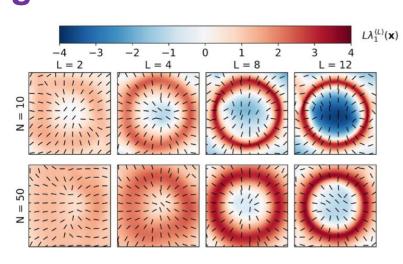


Finite Time Lyapunov Exponent: $\delta x^{(\ell)} = \mathbb{J}_{\ell} \delta x$ $\lambda_1^{(\ell)}(\mathbf{x}) \equiv \ell^{-1} \log \Lambda_1^{(\ell)}(\mathbf{x})$



Vardan Papyan et al. 2020





L. Storm et. al., 2024

(NC1) Variability collapse: $\Sigma_W \rightarrow 0$. (NC2) Convergence to simplex ETF:

 $|\|\boldsymbol{\mu}_c - \boldsymbol{\mu}_G\|_2 - \|\boldsymbol{\mu}_{c'} - \boldsymbol{\mu}_G\|_2| \to 0 \quad \forall \ c, c'$ $\langle \tilde{\boldsymbol{\mu}}_c, \tilde{\boldsymbol{\mu}}_{c'} \rangle \rightarrow \frac{C}{C-1} \delta_{c,c'} - \frac{1}{C-1} \quad \forall \ c, c'.$

(NC3) Convergence to self-duality:

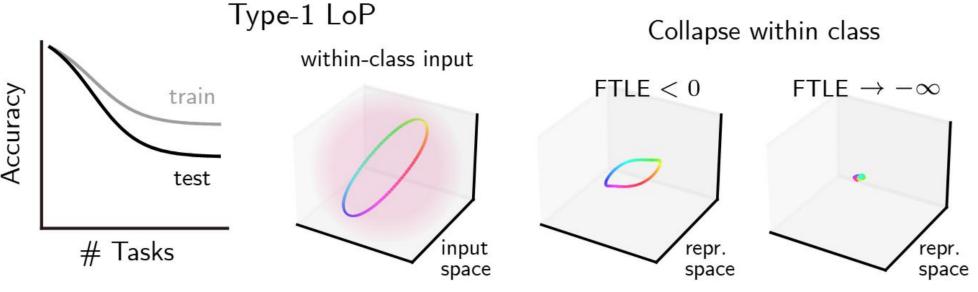
(NC4) Simplification to NCC:

 $\arg\max_{c'} \langle \mathbf{w}_{c'}, \mathbf{h} \rangle + b_{c'} \rightarrow \arg\min \|\mathbf{h} - \boldsymbol{\mu}_{c'}\|_2,$

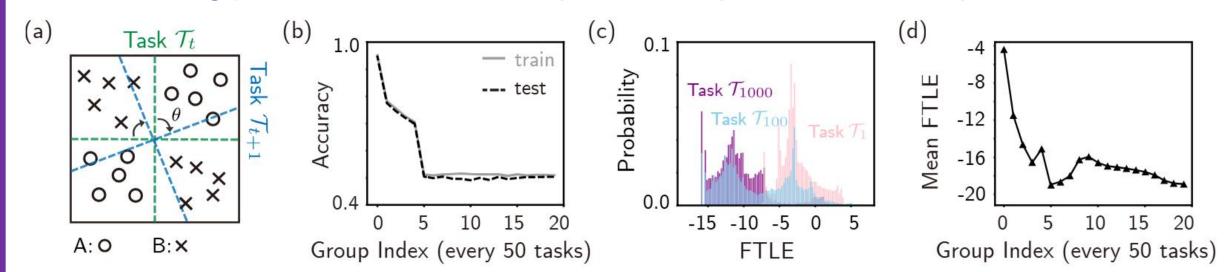
FTLE quantifies how the mapping properties neural networks from the input layer to the representation layer evolve during training, while **UFM** offers analytical tractability for optimization in the representation space.

Dissection

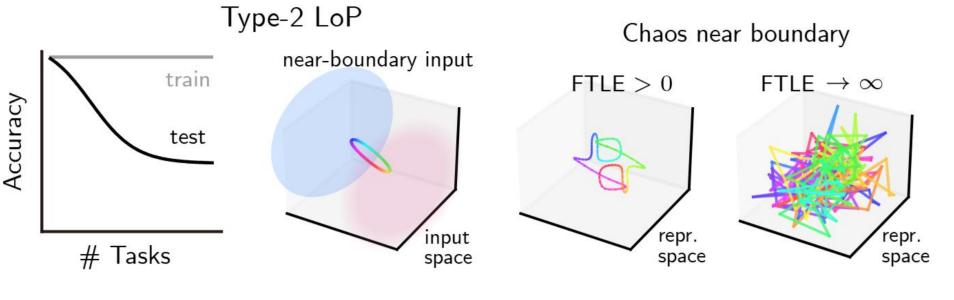
- We identify the existence of **two subtypes of LoP**. On the level of task performance, they only differ in training accuracy.
- We unveil that the causes of the two LoP subtypes are exactly opposite: collapse of representation vs. chaotic behavior.



Type-1 LoP: the Collapse of Representation Space



Type-1 LoP: Learning causes within-class regions to collapse progressively. These collapsed areas accumulate during continual learning. Type-1 LoP occurs when representations of a new task approach these collapsed regions, characterized by highly negative FTLEs. Both training and test accuracies drop sharply, indicating a loss of capacity in learning.

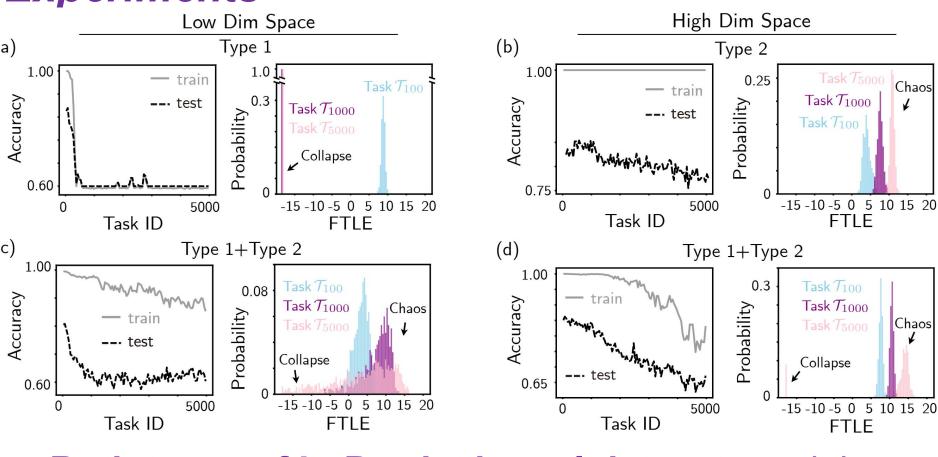


Type-2 LoP: Over-stretched Boundaries and Chaotic Behaviors



Type-2 LoP: Learning causes inter-class regions to expand progressively. These expansions accumulate during continual learning. Type-2 LoP occurs when representations of a new task approach these overly stretched regions in representation space, characterized by highly positive FTLEs. Training accuracy remains high due to the chaotic and over-expressive representation space, while test accuracy degrades, indicating a loss of capacity to generalize.

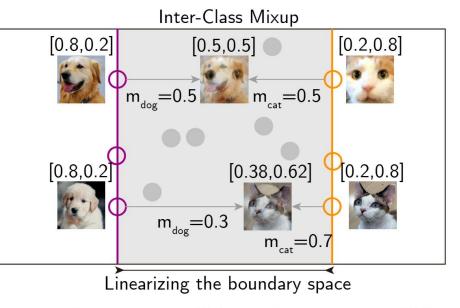
Experiments

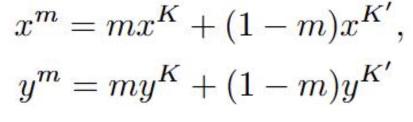


Both types of LoP exist in real datasets and they can impair task performance simultaneously.

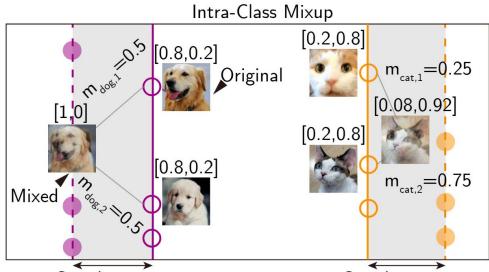
Mitigation

Generalized Mixup





Classical Mixup (Inter-Class) suppresses Type-2 LoP by linearizing the decision boundaries.



$$y_K^m = y^K + \frac{M}{2} - M|0.5 - m|$$

$$y_{K'}^m = y^{K'} - \frac{M}{2} + M|0.5 - m|$$

 Generalized Mixup (Intra-Class) mitigates Type-1 LoP by expanding the intra-class representation.

Verified in Continual Imagenet Benchmark

Table 1: SmallConv Acc. on Continual ImageNet Table 2: ConvNet Acc. on Continual ImageNet

Task (×1000)	0-1	1-2	2-3	3-4	4-5
No Intv.	0.817	0.805	0.562	0.500	0.500
Retrained	0.853	0.845	0.845	0.840	0.840
L2 init	0.804	0.796	0.786	0.785	0.788
Layernorm	0.753	0.760	0.759	0.751	0.751
CBP	0.834	0.847	0.846	0.847	0.857
G-mixup[ours]	0.866	0.881	0.885	0.880	0.879

Task (×1000)	0-1	1-2	2-3	3-4	4-5
No Intv.	0.794	0.778	0.604	0.537	0.500
Retrained	0.857	0.851	0.850	0.849	0.846
L2 init	0.814	0.805	0.800	0.803	0.807
Layernorm	0.782	0.768	0.752	0.749	0.755
CBP	0.848	0.867	0.864	0.863	0.878
G-mixup[ours]	0.875	0.896	0.899	0.894	0.896

G-Mixup consistently outperforms other methods across tasks and settings, demonstrating superior capacity to preserve plasticity over long task sequences.

Acknowledgment

This work is supported by Science and Technology Innovation 2030 – Brain Science and Brain-Inspired Intelligence Project (2021ZD0201301), the National Natural Science Foundation of China (12201125, 9257020), Shanghai Municipal Science and Technology Committeeof Shanghai outstanding academic leaders plan (21XD1400400); Shanghai Institute for Mathematics and Interdisciplinary Sciences (SIMIS-ID-2025-NC). The computations in this research were performed using the CFFF platform of Fudan University.

haoyuwang18@fudan.edu.cn, weidai@fudan.edu.cn, yuyuguo@fudan.edu.cn