

Learning to Clean: Reinforcement Learning for Noisy Label Correction

Marzi Heidari¹, Hanping Zhang¹, Yuhong Guo^{1,2}

¹Carleton University, Ottawa, Canada

²CIFAR AI Chair, Amii, Canada

Introduction

Deep networks learn fast — but they also memorize noise.

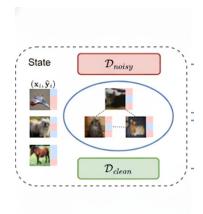
- **Problem**: Real-world datasets contain incorrect or ambiguous labels.
- Conventional methods filtering, reweighting, or SSL rely on static heuristics.
- **Goal**: Learn a **dynamic, feedback-driven policy** that improves labels through experience.

Reinforcement Learning for Noisy Label Correction (RLNLC)

- We reframe label correction as a Reinforcement Learning (RL) problem.
- An model learns to clean labels through sequential decision-making.
- The policy adapts dynamically as the dataset evolves.
- Enables **non-myopic optimization** learning strategies that maximize future generalization.

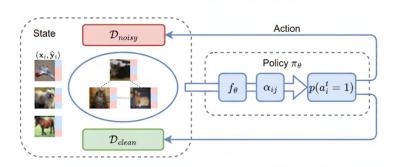
Framework

• State: Dataset with current labels $s^t = \{(\mathbf{x}_i, \widehat{\mathbf{y}}_i^t)\}_{i=1}^N$ at time step t



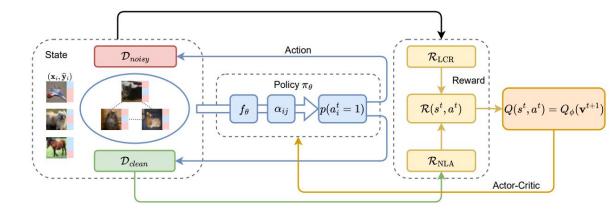
Framework

- State: Dataset with current labels $s^t = \{(\mathbf{x}_i, \widehat{\mathbf{y}}_i^t)\}_{i=1}^N$ at time step t
- **Policy**: Stochastic function $\pi_{\theta}(a|s_t)$ that outputs correction probabilities based on label inconsistency.
- Action: Binary vector $a = [a_1, \dots, a_i, \dots, a_N]$ indicating whether each label is kept (0) or corrected (1).



Framework

- State: Dataset with current labels $s^t = \{(\mathbf{x}_i, \widehat{\mathbf{y}}_i^t)\}_{i=1}^N$ at time step t
- **Policy**: Stochastic network $\pi_{\theta}(a|s_t)$ that outputs correction probabilities based on label inconsistency.
- Action: Binary vector $a = [a_1, \dots, a_i, \dots, a_N]$ indicating whether each label is kept (0) or corrected (1).
- Reward: Combines label consistency and noisy—clean alignment



State and Action

State:

$$\boldsymbol{s}^t = \{(\mathbf{x}_i, \widehat{\mathbf{y}}_i^t)\}_{i=1}^N$$

each label may already be corrected.

Action:

$$\boldsymbol{a}=[a_1,\cdots,a_i,\cdots,a_N]$$
 , $a_i\in\{0,1\}$

 $-a_i=1$ \rightarrow correct the label, $a_i=0$ \rightarrow keep it. Each new action updates the dataset to state s^{t+1} .

Stochastic Policy with Deterministic Transition

Correction Probability:

$$\pi_{\theta}(\boldsymbol{s}^{t})_{i} = p(a_{i}^{t} = 1) = \frac{\sum_{j=1}^{C} \mathbb{1}(\bar{\mathbf{y}}_{ij} > \bar{\mathbf{y}}_{i\widehat{y}_{i}}) \cdot \bar{\mathbf{y}}_{ij}}{\sum_{j=1}^{C} \mathbb{1}(\bar{\mathbf{y}}_{ij} \geq \bar{\mathbf{y}}_{i\widehat{y}_{i}}) \cdot \bar{\mathbf{y}}_{ij}},$$

- Based on label-neighbor disagreement in kNN space.
- Sampled from Bernoulli (p_i) , with $p_i = p(a_i^t = 1)$
- Deterministic transition:

$$\widehat{\mathbf{y}}_i^{t+1} = \begin{cases} \widehat{\mathbf{y}}_i^t & \text{if } a_i^t = 0, \\ \bar{\mathbf{y}}_i & \text{if } a_i^t = 1. \end{cases}$$

→ New dataset = progressively cleaned state.

Reward Function

Label Consistency Reward (LCR): how consistent each label is with its k-nearest neighbors in feature space.

$$\mathcal{R}_{\text{LCR}}(\boldsymbol{s}^t, \boldsymbol{a}^t) = -\mathbb{E}_{i \in [1:N]} \left[\text{KL} \left(\widehat{\mathbf{y}}_i^{t+1}, \sum_{j \in \mathcal{N}_{\omega}(\mathbf{x}_i)} \alpha_{ij} \widehat{\mathbf{y}}_j^{t+1} \right) \right]$$

Noisy Label Alignment Reward (NLA): Encourages corrected (noisy) labels to align with clean ones through inter-subset consistency.

$$\mathcal{R}_{\mathrm{NLA}}(\boldsymbol{s}^{t}, \boldsymbol{a}^{t}) = -\mathbb{E}_{i \in \mathcal{D}_{\mathrm{noi}}^{t+1}} \!\! \left[\mathrm{KL} \! \left(\widehat{\mathbf{y}}_{i}^{t+1} \!\!, \!\!\! \sum_{j \in \mathcal{N}_{\mathrm{cle}}(\mathbf{x}_{i})} \alpha_{ij} \widehat{\mathbf{y}}_{j}^{t+1} \right) \right]$$

Final Reward: $\mathcal{R}(s^t, a^t) = \exp(\mathcal{R}_{LCR}(s^t, a^t) + \lambda \mathcal{R}_{NLA}(s^t, a^t))$

- Keeps rewards positive, bounded, and stable.
- Promotes coherence between corrected and clean subset

Actor-Critic RL with State Encoding

 \bigcirc Learning Objective: Actor (π) proposes label-correction actions. Critic (Q) predicts long-term reward

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{s \sim \rho_{\pi_{\theta}}, \boldsymbol{a} \sim \pi_{\theta}(s)} \left[\nabla_{\theta} \log \pi_{\theta}(\boldsymbol{a}|\boldsymbol{s}) Q(\boldsymbol{s}, \boldsymbol{a}) \right].$$

* State Encoding for the Critic

1. Instance-Level Reward measures label—neighborhood consistency

$$r(\mathbf{x}_i, \widehat{\mathbf{y}}_i^{t+1}) = \exp\left(-\operatorname{KL}\left(\widehat{\mathbf{y}}_i^{t+1}, \sum_{j \in \mathcal{N}_{\omega}(\mathbf{x}_i)} \alpha_{ij} \widehat{\mathbf{y}}_j^{t+1}\right)\right)$$

2. Binning Aggregation encodes the dataset as a histogram vector summarizing label quality

$$(\mathbf{x}_i, \widehat{\mathbf{y}}_i^{t+1}) \in \mathcal{B}_j \quad \text{if} \ r(\mathbf{x}_i, \widehat{\mathbf{y}}_i^{t+1}) \in \left(\frac{j-1}{N_b}, \frac{j}{N_b}\right], \ \mathbf{v}_j^{t+1} = |\mathcal{B}_j|/N$$

- The **critic** receives this compact vector \mathbf{v}_i^{t+1} instead of the full dataset.
- It learns to map the global label-quality distribution to expected future rewards.
- The **actor** uses critic feedback to refine the correction policy.
- provides a good trade-off between granularity and stability.

Label Cleaning for Prediction Model Training

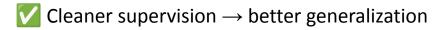
Stage 1 — Policy-Guided Cleaning:

- \circ Apply policy for T' steps \rightarrow progressively refine labels.
- \circ Final state $s^{T'} = \{(\mathbf{x}_i, \widehat{\mathbf{y}}_i^{T'})\}_{i=1}^N = \text{cleaned dataset.}$

Stage 2 — Model Training

Step	Description						
Pre-train	Prediction model $h_{\psi}\circ f_{ heta}$ on noisy data (cross-entropy).						
Fine-tune	Same model on cleaned labels from $oldsymbol{s}^{T'}.$						

Outcome:



Experimental Results

Table 1: Test accuracy (%) of different methods on CIFAR10-IDN and CIFAR100-IDN under various IDN noise rates. Standard deviations are shown as subscripts in parentheses. Columns correspond to different label noise ratios. † denotes results reproduced using publicly available source code.

Method	CIFAR10-IDN				CIFAR100-IDN					
	0.20	0.30	0.40	0.45	0.50	0.20	0.30	0.40	0.45	0.50
CE [6]	75.8	69.2	62.5	51.7	39.4	30.4	24.2	21.5	15.2	14.4
Mixup [43]	73.2	72.0	61.6	56.5	49.0	32.9	29.8	25.9	23.1	21.3
Forward [44]	74.6	69.8	60.2	48.8	46.3	36.4	33.2	26.8	21.9	19.3
Reweight [19]	76.2	70.1	62.6	51.5	45.5	36.7	31.9	28.4	24.1	20.2
Decoupling [20]	78.7	75.2	61.7	58.6	50.4	36.5	30.9	27.9	23.8	19.6
Co-teaching [11]	81.0	78.6	73.4	71.6	45.9	38.0	33.4	28.0	25.6	24.0
MentorNet [10]	81.0	77.2	71.8	66.2	47.9	38.9	34.2	31.9	27.5	24.2
DivideMix [17]	94.8	94.6	94.5	94.1	93.0	77.1	76.3	70.8	57.8	58.6
CausalNL [6]	81.4	80.3	77.3	78.6	67.3	41.4	40.9	34.0	33.3	32.1
SSR [†] [24]	96.5	96.5	96.3	95.9	94.1	78.8	78.6	77.0	75.0	72.8
RLNLC (Ours)	$97.3_{(0.1)}$	$97.1_{(0.1)}$	$96.9_{(0.2)}$	$96.6_{(0.2)}$	$95.8_{(0.4)}$	$80.5_{(0.7)}$	$80.1_{(0.7)}$	$78.5_{(0.8)}$	$77.2_{(0.8)}$	$74.7_{(0.9)}$

Thank You

