Generalization Guarantees for Learning Score-Based Branch-and-Cut Policies

From Generalization Theory to Algorithm Design in Branch-and-Cut

Hongyu Cheng and Amitabh Basu

November 6, 2025

Department of Applied Mathematics and Statistics Johns Hopkins University

Motivation and Background

Mixed-Integer Linear Programs: General Formulation

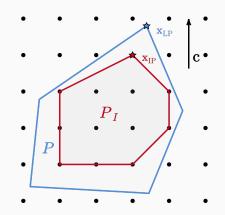
• General Form:

$$\begin{aligned} \max_{x} & c^{\top}x, \\ \text{s.t.} & Ax \leq b, \\ & x \in \mathbb{Z}^{n} \times \mathbb{R}^{d} \end{aligned}$$

- $\mathcal{P} = \{x : Ax \leq b\}$
- $S = \mathcal{P} \cap (\mathbb{Z}^n \times \mathbb{R}^d)$
- $\mathcal{P}_I = \operatorname{conv}(S)$

Solution Approach:

- Branch-and-Bound
- Cutting Planes



Branch-and-Bound

• If x_{LP}^{\star} has fractional coordinates, select a fractional variable (e.g., x_i^*) and partition:

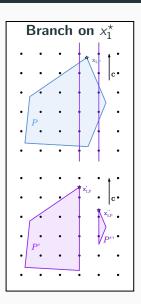
$$\mathcal{P} \to \mathcal{P}_1 \cup \mathcal{P}_2$$

$$\mathcal{P}_1 = \mathcal{P} \cap \{x : x_i \le \lfloor x_i^* \rfloor\}$$

$$\mathcal{P}_2 = \mathcal{P} \cap \{x : x_i \ge \lceil x_i^* \rceil\}$$

Critical Decision: Which fractional variable to branch on?

$$\min_{i} \max\{z_{\text{LP}}(\mathcal{P}_1), z_{\text{LP}}(\mathcal{P}_2)\}$$



(e.g., strong branching)

Branch-and-Bound

• If x_{LP}^{\star} has fractional coordinates, select a fractional variable (e.g., x_i^*) and partition:

$$\mathcal{P} \to \mathcal{P}_1 \cup \mathcal{P}_2$$

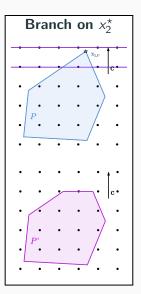
$$\mathcal{P}_1 = \mathcal{P} \cap \{x : x_i \le \lfloor x_i^* \rfloor\}$$

$$\mathcal{P}_2 = \mathcal{P} \cap \{x : x_i \ge \lceil x_i^* \rceil\}$$

Critical Decision: Which fractional variable to branch on?

$$\min_{i} \max\{z_{\text{LP}}(\mathcal{P}_1), z_{\text{LP}}(\mathcal{P}_2)\}$$





(e.g., strong branching)

Cutting Planes

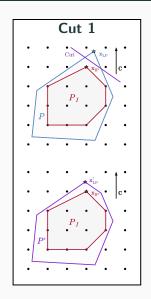
 A cut π[⊤]x ≥ 1 is valid for P_I if it satisfies all integer points:

$$\pi^{\top} x \ge 1 \quad \forall x \in \mathcal{P}_I$$

 And ideally, cuts off the current LP solution:

$$\pi^{\top} x_{\mathrm{LP}}^{\star} < 1$$

• Critical Decision: From numerous candidate cuts in pool \mathcal{C} , select $S\subseteq\mathcal{C}$ to add.



Cutting Planes

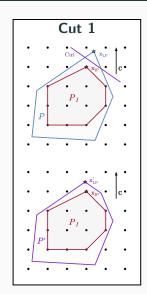
 A cut π[⊤]x ≥ 1 is valid for P_I if it satisfies all integer points:

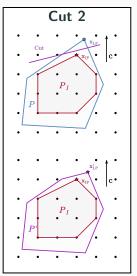
$$\pi^{\top} x \geq 1 \quad \forall x \in \mathcal{P}_I$$

 And ideally, cuts off the current LP solution:

$$\pi^{\top} x_{\mathrm{LP}}^{\star} < 1$$

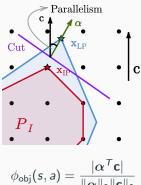
• Critical Decision: From numerous candidate cuts in pool \mathcal{C} , select $S\subseteq\mathcal{C}$ to add.





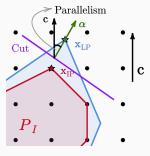
- State $s \in S$: current B&C state
- Action $a \in \mathcal{A}$: candidate cut $\alpha^{\top} \mathbf{x} \leq \beta$
- Hand-crafted score vector: $\phi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^{\ell}$.

- State $s \in \mathcal{S}$: current B&C state
- Action $a \in A$: candidate cut $\alpha^{\top} \mathbf{x} \leq \beta$
- Hand-crafted score vector: $\phi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^{\ell}$.

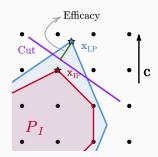


$$\phi_{\text{obj}}(s, a) = \frac{|\alpha^T \mathbf{c}|}{\|\alpha\|_2 \|\mathbf{c}\|_2}$$

- State $s \in \mathcal{S}$: current B&C state
- Action $a \in A$: candidate cut $\alpha^{\top} \mathbf{x} \leq \beta$
- Hand-crafted score vector: $\phi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^{\ell}$.

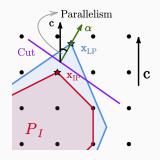


$$\phi_{\mathrm{obj}}(s,a) = \frac{|\alpha^T \mathbf{c}|}{\|\alpha\|_2 \|\mathbf{c}\|_2}$$

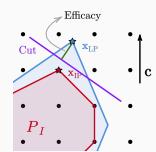


$$\phi_{\mathsf{eff}}(s,a) = \frac{oldsymbol{lpha}^\mathsf{T} \mathbf{x}_{\mathsf{LP}} - eta}{\|oldsymbol{lpha}\|_2}$$

- State $s \in S$: current B&C state
- Action $a \in \mathcal{A}$: candidate cut $\boldsymbol{\alpha}^{\top} \mathbf{x} \leq \beta$
- Hand-crafted score vector: $\phi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^{\ell}$.



$$\phi_{\mathrm{obj}}(s,a) = \frac{|oldsymbol{lpha}^T \mathbf{c}|}{\|oldsymbol{lpha}\|_2 \|\mathbf{c}\|_2}$$



$$\phi_{\mathsf{eff}}(s,a) = rac{oldsymbol{lpha}^\mathsf{T} \mathbf{x}_{\mathsf{LP}} - eta}{\|oldsymbol{lpha}\|_2}$$

• SCIP: $\phi(s, a) = \begin{bmatrix} \phi_{\text{obj}}(s, a) & \phi_{\text{eff}}(s, a) & \phi_{\text{dcd}}(s, a) & \phi_{\text{int}}(s, a) \end{bmatrix}^{\top}$

Cut Selection in SCIP

• Score function, based on hand-tuned weights $\mathbf{w} \in \mathbb{R}^4_+$:

$$f_{\mathsf{SCIP}}(s, a, \mathbf{w}) = \mathbf{w}_1 \phi_{\mathsf{obj}}(s, a) + \mathbf{w}_2 \phi_{\mathsf{eff}}(s, a) + \mathbf{w}_3 \phi_{\mathsf{dcd}}(s, a) + \mathbf{w}_4 \phi_{\mathsf{int}}(s, a)$$

= $\mathbf{w}^{\top} \phi(s, a)$

• At state s, select cut $a = (\alpha, \beta)$ with the highest score:

$$a^* \in \operatorname*{arg\,max}_{a \in \mathcal{A}^s} f_{\mathsf{SCIP}}(s, a, \mathbf{w})$$

Cut Selection in SCIP

• Score function, based on hand-tuned weights $\mathbf{w} \in \mathbb{R}^4_+$:

$$f_{\mathsf{SCIP}}(s, a, \mathbf{w}) = \mathbf{w}_1 \phi_{\mathsf{obj}}(s, a) + \mathbf{w}_2 \phi_{\mathsf{eff}}(s, a) + \mathbf{w}_3 \phi_{\mathsf{dcd}}(s, a) + \mathbf{w}_4 \phi_{\mathsf{int}}(s, a)$$

= $\mathbf{w}^{\top} \phi(s, a)$

• At state s, select cut $a = (\alpha, \beta)$ with the highest score:

$$a^* \in \operatorname*{arg\,max}_{a \in \mathcal{A}^s} f_{\mathsf{SCIP}}(s, a, \mathbf{w})$$

Problems with this approach:

- w are manually tuned (good for some, not for others)
- Linear model $f_{SCIP}(s, a, \mathbf{w}) = \mathbf{w}^{\top} \phi(s, a)$ is less powerful

• LP objective value improvement, $\Delta(s, a)$, is the most popular performance metric for cut selection $(s = (A, b, c), a = (\alpha, \beta))$.

- LP objective value improvement, $\Delta(s, a)$, is the most popular performance metric for cut selection $(s = (A, b, c), a = (\alpha, \beta))$.
- Consider $\max \left\{ x_n : \sum_{i=1}^n x_i = r, x \in \mathbb{R}^n_+ \right\}$, for some r > 0. It's not hard to verify that

$$\Delta(s, a) = \frac{\phi_{\mathsf{eff}}(s, a)}{\phi_{\mathsf{par}}(s, a) - \sqrt{1 - \phi_{\mathsf{par}}(s, a)^2 / (n - 1)}}$$

- LP objective value improvement, $\Delta(s, a)$, is the most popular performance metric for cut selection $(s = (A, b, c), a = (\alpha, \beta))$.
- Consider $\max \left\{ x_n : \sum_{i=1}^n x_i = r, x \in \mathbb{R}^n_+ \right\}$, for some r > 0. It's not hard to verify that

$$\Delta(s, a) = \frac{\phi_{\mathsf{eff}}(s, a)}{\phi_{\mathsf{par}}(s, a) - \sqrt{1 - \phi_{\mathsf{par}}(s, a)^2}/(n - 1)}$$

• There is no \mathbf{w} such that $f_{\mathsf{SCIP}}(s, a, \mathbf{w}) = \mathbf{w}^{\top} \phi(s, a)$ approximates $\Delta(s, a)$ well for all (s, a) in this family. Also, there exists s, a^1, a^2 such that $\Delta(s, a^1) > \Delta(s, a^2)$ but $f_{\mathsf{SCIP}}(s, a^1, \mathbf{w}) < f_{\mathsf{SCIP}}(s, a^2, \mathbf{w})$ for all \mathbf{w} .

- LP objective value improvement, $\Delta(s, a)$, is the most popular performance metric for cut selection $(s = (A, b, c), a = (\alpha, \beta))$.
- Consider $\max \left\{ x_n : \sum_{i=1}^n x_i = r, x \in \mathbb{R}^n_+ \right\}$, for some r > 0. It's not hard to verify that

$$\Delta(s, a) = \frac{\phi_{\mathsf{eff}}(s, a)}{\phi_{\mathsf{par}}(s, a) - \sqrt{1 - \phi_{\mathsf{par}}(s, a)^2 / (n - 1)}}$$

• There is no **w** such that $f_{SCIP}(s, a, \mathbf{w}) = \mathbf{w}^{\top} \phi(s, a)$ approximates $\Delta(s, a)$ well for all (s, a) in this family. Also, there exists s, a^1, a^2 such that $\Delta(s, a^1) > \Delta(s, a^2)$ but $f_{SCIP}(s, a^1, \mathbf{w}) < f_{SCIP}(s, a^2, \mathbf{w})$ for all \mathbf{w} .

$$f_{\text{SCIP}}(s, a, \mathbf{w}) = \mathbf{w}^{\top} \phi(s, a) \longrightarrow f(s, a, \mathbf{w}) = h(\phi(s, a), \mathbf{w}),$$

where $h(\cdot, \mathbf{w}) : \mathbb{R}^{\ell} \to \mathbb{R}$ is an expressive, nonlinear function.

Recent ML Approaches under The Unified Framework

Cut Selection: s = state, a = cut

• Huang+ 2022: $f_{\text{cut}}(s, a, \mathbf{w}) = \text{MLP}(\phi_{\text{cut}}(s, a), \mathbf{w})$ $\phi_{\text{cut}} \in \mathbb{R}^{14}$: efficacy, support, dynamism, etc.

Recent ML Approaches under The Unified Framework

Cut Selection: s = state, a = cut

- Huang+ 2022: $f_{\text{cut}}(s, a, \mathbf{w}) = \text{MLP}(\phi_{\text{cut}}(s, a), \mathbf{w})$ $\phi_{\text{cut}} \in \mathbb{R}^{14}$: efficacy, support, dynamism, etc.
- Paulus+ 2022: $f_{\text{cut}}(s, a, \mathbf{w}) = \text{GNN} + \text{Attn}_{\mathbf{w}'}(\phi_{\text{cut}}(s, a), \mathbf{w})$ ϕ_{cut} : tripartite graph encoding

Node Selection: s = B&C state, a = node

• Yilmaz+ 2021: $f_{\text{node}}(s, a, \mathbf{w}) = \text{MLP}(\phi_{\text{node}}(s, a), \mathbf{w})$ $\phi_{\text{node}} \in \mathbb{R}^{29}$: basis status, bounds, depth

Branching: s = state, a = variable

- Khalil+ 2016: $f_{\text{branch}}(s, a, \mathbf{w}) = \mathbf{w}^T \phi_{\text{branch}}(s, a)$ (linear) $\phi_{\text{branch}} \in \mathbb{R}^{72}$: variable features
- Gasse+ 2019: $f_{\text{branch}}(s, a, \mathbf{w}) = \text{GCNN}(\phi_{\text{branch}}(s, a), \mathbf{w})$ ϕ_{branch} : bipartite LP graph features

- ullet Empirical success \Longrightarrow learning works in practice!
- Learning theory problems:

- ullet Empirical success \Longrightarrow learning works in practice!
- Learning theory problems:
 - Can learned parameters w generalize from finite training data?

- ullet Empirical success \Longrightarrow learning works in practice!
- Learning theory problems:
 - Can learned parameters w generalize from finite training data?
 Generalization Error ⇒ this talk!

- Empirical success ⇒ learning works in practice!
- Learning theory problems:
 - Can learned parameters w generalize from finite training data?
 Generalization Error ⇒ this talk!
 - How to design a hypothesis class $\{h(\cdot, \mathbf{w}) : \mathbb{R}^{\ell} \mid \mathbf{w} \in \mathbb{R}^{W}\}$ such that some $h(\cdot, \mathbf{w})$ imitates the "expert" scoring function well?

- Empirical success ⇒ learning works in practice!
- Learning theory problems:
 - Can learned parameters w generalize from finite training data?
 Generalization Error ⇒ this talk!
 - How to design a hypothesis class $\{h(\cdot, \mathbf{w}) : \mathbb{R}^{\ell} \mid \mathbf{w} \in \mathbb{R}^{W}\}$ such that some $h(\cdot, \mathbf{w})$ imitates the "expert" scoring function well? Approximation Error \implies working paper!

- Empirical success ⇒ learning works in practice!
- Learning theory problems:
 - Can learned parameters w generalize from finite training data?
 Generalization Error ⇒ this talk!
 - How to design a hypothesis class $\{h(\cdot, \mathbf{w}) : \mathbb{R}^{\ell} \mid \mathbf{w} \in \mathbb{R}^{W}\}$ such that some $h(\cdot, \mathbf{w})$ imitates the "expert" scoring function well? Approximation Error \implies working paper!
 - How to efficiently find w minimizing training error?

- ullet Empirical success \Longrightarrow learning works in practice!
- Learning theory problems:
 - Can learned parameters w generalize from finite training data?
 Generalization Error ⇒ this talk!
 - How to design a hypothesis class $\{h(\cdot, \mathbf{w}) : \mathbb{R}^{\ell} \mid \mathbf{w} \in \mathbb{R}^{W}\}$ such that some $h(\cdot, \mathbf{w})$ imitates the "expert" scoring function well? Approximation Error \implies working paper!
 - How to efficiently find w minimizing training error?
 Optimization Error ⇒ no clue and no hope!!!

Generalization Error: Formulation

- Let V(I, w) be the B&C tree size (e.g., number of nodes) on instance I using the scoring function parameterized by w.
- Assume instances I_1, \ldots, I_N are i.i.d. samples from an unknown distribution \mathcal{D} .
- We are interested in the uniform convergence:

$$\sup_{\mathbf{w} \in \mathcal{W}} \left| \frac{1}{N} \sum_{i=1}^{N} V(I_i, \mathbf{w}) - \mathbb{E}_{I \sim \mathcal{D}}[V(I, \mathbf{w})] \right|$$

Generalization Error: Formulation

Why uniform convergence?

$$\begin{split} \sup_{\mathbf{w} \in \mathcal{W}} \left| \frac{1}{N} \sum_{i=1}^{N} V(I_i, \mathbf{w}) - \mathbb{E}_{I \sim \mathcal{D}}[V(I, \mathbf{w})] \right| &= \varepsilon_N \\ \Longrightarrow \left| \frac{1}{N} \sum_{i=1}^{N} V(I_i^{\text{train}}, \mathbf{w}) - \frac{1}{N} \sum_{j=1}^{N} V(I_j^{\text{test}}, \mathbf{w}) \right| &\leq 2\varepsilon_N, \quad \forall \mathbf{w} \in \mathcal{W} \end{split}$$

Generalization Error: Formulation

Why uniform convergence?

$$\begin{split} \sup_{\mathbf{w} \in \mathcal{W}} \left| \frac{1}{N} \sum_{i=1}^{N} V(I_i, \mathbf{w}) - \mathbb{E}_{I \sim \mathcal{D}}[V(I, \mathbf{w})] \right| &= \varepsilon_N \\ \Longrightarrow \left| \frac{1}{N} \sum_{i=1}^{N} V(I_i^{\text{train}}, \mathbf{w}) - \frac{1}{N} \sum_{j=1}^{N} V(I_j^{\text{test}}, \mathbf{w}) \right| &\leq 2\varepsilon_N, \quad \forall \mathbf{w} \in \mathcal{W} \end{split}$$

$$\text{Let } \hat{\mathbf{w}} \in \arg\min_{\mathbf{w} \in \mathcal{W}} \frac{1}{N} \sum_{i=1}^{N} V(I_i^{\text{train}}, \mathbf{w}) :$$

$$\Longrightarrow \mathbb{E}_{I \sim \mathcal{D}}[V(I, \hat{\mathbf{w}})] - \min_{\mathbf{w} \in \mathcal{W}} \mathbb{E}_{I \sim \mathcal{D}}[V(I, \mathbf{w})] \leq 2\varepsilon_N, \end{split}$$

Derivation of Generalization Bounds

Definition

A function class \mathcal{G} has a (Γ, γ, β) -structure if $\forall g_1, ..., g_N \in \mathcal{G}$:

- Domain can be decomposed into $\leq N^{\gamma}\Gamma$ regions.
- In each region: every g_i is a polynomial of degree $\leq \beta$.

Definition

A function class \mathcal{G} has a (Γ, γ, β) -structure if $\forall g_1, ..., g_N \in \mathcal{G}$:

- Domain can be decomposed into $\leq N^{\gamma}\Gamma$ regions.
- In each region: every g_i is a polynomial of degree $\leq \beta$.
- Linear: $\{g(\mathbf{x}) = \boldsymbol{\alpha}^{\top}\mathbf{x} + \beta \mid (\boldsymbol{\alpha}, \beta) \in \mathbb{R}^{d+1}\}$ \implies has a (1, 0, 1)-structure.

Definition

A function class \mathcal{G} has a (Γ, γ, β) -structure if $\forall g_1, ..., g_N \in \mathcal{G}$:

- Domain can be decomposed into $\leq N^{\gamma}\Gamma$ regions.
- In each region: every g_i is a polynomial of degree $\leq \beta$.
- Linear: $\{g(\mathbf{x}) = \boldsymbol{\alpha}^{\top}\mathbf{x} + \beta \mid (\boldsymbol{\alpha}, \beta) \in \mathbb{R}^{d+1}\}$ \implies has a (1, 0, 1)-structure.
- Piecewise linear: $\{g(\mathbf{x}) = \max\{0, \boldsymbol{\alpha}^{\top}\mathbf{x} + \beta\} \mid (\boldsymbol{\alpha}, \beta) \in \mathbb{R}^{d+1}\}$ \implies has a (1, d, 1)-structure.

Definition

A function class \mathcal{G} has a (Γ, γ, β) -structure if $\forall g_1, ..., g_N \in \mathcal{G}$:

- Domain can be decomposed into $\leq N^{\gamma}\Gamma$ regions.
- In each region: every g_i is a polynomial of degree $\leq \beta$.
- Linear: $\{g(\mathbf{x}) = \boldsymbol{\alpha}^{\top} \mathbf{x} + \beta \mid (\boldsymbol{\alpha}, \beta) \in \mathbb{R}^{d+1}\}$ \implies has a (1, 0, 1)-structure.
- Piecewise linear: $\{g(\mathbf{x}) = \max\{0, \boldsymbol{\alpha}^{\top}\mathbf{x} + \beta\} \mid (\boldsymbol{\alpha}, \beta) \in \mathbb{R}^{d+1}\}$ \implies has a (1, d, 1)-structure.

Lemma

$$\begin{split} \text{ReLU MLP: } \left\{ g(\mathbf{w}) = \text{MLP}(\mathbf{x}, \mathbf{w}) \mid \mathbf{x} \in \mathbb{R}^{\ell} \right\} \\ \Longrightarrow \text{ has a } \left(2^{L} \left(\frac{4eU}{W} \right)^{LW}, LW, L \right) \text{-structure.} \end{split}$$

Consider $V: \mathcal{I} \times \mathcal{W} \to \mathbb{R}$.

- Primal class: $V = \{V(\cdot, \mathbf{w}) : \mathcal{I} \to \mathbb{R} \mid \mathbf{w} \in \mathcal{W}\}$
- Dual class: $\mathcal{V}^* = \{V(I, \cdot) : \mathcal{W} \to \mathbb{R} \mid I \in \mathcal{I}\}$

Consider $V: \mathcal{I} \times \mathcal{W} \to \mathbb{R}$.

- Primal class: $V = \{V(\cdot, \mathbf{w}) : \mathcal{I} \to \mathbb{R} \mid \mathbf{w} \in \mathcal{W}\}$
- Dual class: $V^* = \{V(I, \cdot) : \mathcal{W} \to \mathbb{R} \mid I \in \mathcal{I}\}$

Lemma

If
$$\mathcal{V}^*$$
 has a (Γ, γ, β) -structure and $V(I, \mathbf{w}) \leq H$, then
$$\sup_{\mathbf{w} \in \mathcal{W}} \left| \frac{1}{N} \sum_{i=1}^N V(I_i, \mathbf{w}) - \mathbb{E}_{I \sim \mathcal{D}}[V(I, \mathbf{w})] \right| = \mathcal{O}\left(H\sqrt{\frac{\gamma \log \gamma + W \log \beta + \log \Gamma + \log(1/\delta)}{N}}\right)$$

Lemma

If
$$\mathcal{V}^*$$
 has a (Γ, γ, β) -structure and $V(I, \mathbf{w}) \leq H$, then
$$\sup_{\mathbf{w} \in \mathcal{W}} \left| \frac{1}{N} \sum_{i=1}^N V(I_i, \mathbf{w}) - \mathbb{E}_{I \sim \mathcal{D}}[V(I, \mathbf{w})] \right| = \mathcal{O}\left(H\sqrt{\frac{\gamma \log \gamma + W \log \beta + \log \Gamma + \log(1/\delta)}{N}}\right)$$

- Recall at each state s, we select action $a^* \in \arg\max_{a \in \mathcal{A}^s} f(s, a, \mathbf{w})$.
- Assume $|\mathcal{A}^s| \leq \rho$ for all s.
- Assume that we will terminate after M steps.

Lemma

If
$$\mathcal{V}^*$$
 has a (Γ, γ, β) -structure and $V(I, \mathbf{w}) \leq H$, then
$$\sup_{\mathbf{w} \in \mathcal{W}} \left| \frac{1}{N} \sum_{i=1}^N V(I_i, \mathbf{w}) - \mathbb{E}_{I \sim \mathcal{D}}[V(I, \mathbf{w})] \right| = \mathcal{O}\left(H\sqrt{\frac{\gamma \log \gamma + W \log \beta + \log \Gamma + \log(1/\delta)}{N}}\right)$$

- Recall at each state s, we select action $a^* \in \arg\max_{a \in \mathcal{A}^s} f(s, a, \mathbf{w})$.
- Assume $|\mathcal{A}^s| \leq \rho$ for all s.
- Assume that we will terminate after *M* steps.

Theorem

If
$$\{f(\mathbf{x},\cdot): \mathcal{W} \to \mathbb{R} \mid \mathbf{x} \in \mathbb{R}^\ell\}$$
 has a (Γ,γ,β) -structure, then \mathcal{V}^* has a $\left(2\rho^{(\gamma+W)(M+1)}\Gamma\left(e^{\displaystyle\frac{\rho^2\beta}{W}}\right)^W,\gamma+W,0\right)$ -structure.

Theorem

If
$$\{f(\mathbf{x},\cdot): \mathcal{W} \to \mathbb{R} \mid \mathbf{x} \in \mathbb{R}^\ell\}$$
 has a (Γ,γ,β) -structure, then \mathcal{V}^* has a $\left(2\rho^{(\gamma+W)(M+1)}\Gamma\left(e^{\displaystyle\frac{\rho^2\beta}{W}}\right)^W,\gamma+W,0\right)$ -structure.

Recall that

- Linear scoring class $(f(s, a, \mathbf{w}) = \mathbf{w}^{\top} \phi(s, a))$: (1, 0, 1)-structure
- ReLU MLP scoring class: $\left(2^L \left(\frac{4eU}{W}\right)^{LW}, LW, L\right)$ -structure

Interpretation of Generalization Bound

Let
$$\sup_{\mathbf{w} \in \mathcal{W}} \left| \frac{1}{N} \sum_{i=1}^{N} V(I_i, \mathbf{w}) - \mathbb{E}_{I \sim \mathcal{D}}[V(I, \mathbf{w})] \right| = \varepsilon_N.$$

Theorem

$$arepsilon_{N} = \mathcal{O}\left(H\sqrt{rac{LW\log(\cdots) + \log(1/\delta)}{N}}
ight)$$

Interpretation of Generalization Bound

Let
$$\sup_{\mathbf{w} \in \mathcal{W}} \left| \frac{1}{N} \sum_{i=1}^{N} V(I_i, \mathbf{w}) - \mathbb{E}_{I \sim \mathcal{D}}[V(I, \mathbf{w})] \right| = \varepsilon_N.$$

Theorem

$$arepsilon_{\mathsf{N}} = \mathcal{O}\left(H\sqrt{rac{LW\log(\cdots) + \log(1/\delta)}{\mathsf{N}}}
ight)$$

- Scaling Law for ReLU Policies: $N \lesssim LW$.
- L: number of layers; W: number of parameters.
- Scale the number of training samples N linearly with model size LW to maintain generalization performance.

Experimental Validation: Generalization Guarantees

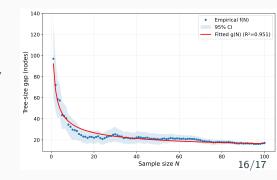
- MLP: 2 hidden ReLU layers (width 10)
- Input: Hand-crafted features
- Label: LP objective improvement

Empirical Generalization Metric:

$$f(N) = \left| \frac{1}{N} \sum_{i=1}^{N} V(I_i^{\mathsf{train}}, \mathbf{w}) - \frac{1}{N} \sum_{j=1}^{N} V(I_j^{\mathsf{test}}, \mathbf{w}) \right|$$

Results:

- Theory suggests $\mathcal{O}(1/\sqrt{N})$ decay
- Fit empirical data to $g(N; a, b) = a/\sqrt{N} + b$, $R^2 > 0.93$



Thank you.